首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157806篇
  免费   23199篇
  国内免费   5958篇
  2024年   221篇
  2023年   1957篇
  2022年   2792篇
  2021年   4560篇
  2020年   6184篇
  2019年   8958篇
  2018年   8292篇
  2017年   7175篇
  2016年   7053篇
  2015年   7879篇
  2014年   10925篇
  2013年   13064篇
  2012年   8725篇
  2011年   10387篇
  2010年   8233篇
  2009年   7952篇
  2008年   8168篇
  2007年   7910篇
  2006年   7224篇
  2005年   6329篇
  2004年   5492篇
  2003年   4864篇
  2002年   4436篇
  2001年   3164篇
  2000年   2426篇
  1999年   2182篇
  1998年   1997篇
  1997年   1674篇
  1996年   1558篇
  1995年   1497篇
  1994年   1331篇
  1993年   1155篇
  1992年   1128篇
  1991年   980篇
  1990年   795篇
  1989年   726篇
  1988年   655篇
  1987年   559篇
  1986年   457篇
  1985年   665篇
  1984年   960篇
  1983年   637篇
  1982年   747篇
  1981年   587篇
  1980年   458篇
  1979年   441篇
  1978年   340篇
  1977年   262篇
  1976年   232篇
  1973年   156篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Desulfurization of model and diesel oils by resting cells of Gordona sp.   总被引:2,自引:0,他引:2  
The desulfurization activity of the resting cells of Gordona sp. CYKS1 was strongly depended on harvest time and the highest value when the cells had been harvested in the early growth phase (0.12 mg sulfur g–1 cell–1 h–1). For the model oil, hexadecane containing dibenzothiophene, the specific desulfurization rate decreased as the reaction proceeded. Both the specific and the volumetric desulfurization rates were not significantly affected by the aqueous-to-oil phase ratio. The diesel oils, light gas oil and a middle distillate unit feed were desulfurized at higher rates (ca. 0.34 mg sulfur g–1 cell–1 h–1) than the model oil (0.12 mg sulfur g–1 cell–1 h–1).  相似文献   
2.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
3.
4.
Primates have long been used as indicator species for assessing overall ecosystem health. However, area‐wide census methods are time consuming, costly, and not always feasible under many field conditions. Therefore, it is important to establish whether monitoring a subset of a population accurately reflects demographic changes occurring in the population at large. Over the past 35 years, we have conducted 15 area‐wide censuses in Sector Santa Rosa, Costa Rica. These efforts have revealed important trends in population growth patterns of capuchin monkeys following the protection and subsequent regeneration of native forests. During this same period, we have also intensively studied a subset of the capuchin groups. Comparing these two datasets, we investigate whether the population structures of the closely monitored groups are reliable indicators of area‐wide demographic patterns. We compare the overall group size and the individual age/sex class compositions of study groups and nonstudy groups (i.e., those contacted during area‐wide censuses only). Our study groups contained more individuals overall with a larger proportion of infants, and there were indications that the proportion of adult and subadult males was lower. These differences can be ascribed either to sampling errors or real differences attributable to human presence and/or better habitat quality for the study groups. No other sex/age classes differed, and major demographic changes were simultaneously evident in both study and nonstudy groups. This study suggests that the Santa Rosa capuchin population is similarly impacted by large‐scale ecological patterns observable within our study groups.  相似文献   
5.
Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.  相似文献   
6.
The cysteine-rich region (CRR) of the β2 integrin subunit was replaced by that of β1 to give the chimera β2NV1. β2NV1 can combine with αL to form a variant leukocyte-function-associated antigen (LFA)-1 on COS cell surface, suggesting that the specificity of the β2 interaction with αL does not lie in the CRR. Unlike those expressing wild-type LFA-1, COS cells expressing αLβ2NV1 are constitutively active in intercellular adhesion molecule (ICAM)-1 adhesion. These results suggest that activation of LFA-1 involves the release of an intramolecular constraint, which is maintained, in part, by the authentic β2 CRR.  相似文献   
7.
8.
9.
《Cell reports》2020,30(1):112-123.e4
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   
10.
Peanut (Arachis hypogaea) agglutinin (PNA) is extensively used as tumour marker as it strongly recognises the cancer specific T antigen (Galβ1→3GalNAc-), but not its sialylated version. However, an additional specificity towards Galβ1→4GlcNAc (LacNAc), which is not tumour specific, had been attributed to PNA. For correct interpretation of lectin histochemical results we examined PNA sugar specificity using naturally occurring or semi-synthetic glycoproteins, matrix-immobilised galactosides and lectin-binding tissue glycoproteins, rather than mono- or disaccharides as ligands. Dot-blots, transfer blots or polystyrene plate coatings of the soluble glycoconjugates were probed with horse-radish peroxidase (HRP) conjugates of PNA and other lectins of known specificity. Modifications of PNA-binding glycoproteins, including selective removal of O-linked oligosaccharides and treatment with glycosidases revealed that Galβ1→4GlcNAc (LacNAc) was ineffective while terminal α-linked galactose (TAG) as well as exposed T antigen (Galβ1→3 GalNAc-) was excellent as sugar moiety in glycoproteins for their recognition by PNA. When immobilised, melibiose was superior to lactose in PNA binding. Results were confirmed using TAG-specific human serum anti-α-galactoside antibody.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号