首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12124篇
  免费   831篇
  国内免费   447篇
  2024年   20篇
  2023年   189篇
  2022年   252篇
  2021年   455篇
  2020年   546篇
  2019年   737篇
  2018年   472篇
  2017年   303篇
  2016年   330篇
  2015年   344篇
  2014年   699篇
  2013年   889篇
  2012年   606篇
  2011年   770篇
  2010年   559篇
  2009年   549篇
  2008年   575篇
  2007年   590篇
  2006年   544篇
  2005年   553篇
  2004年   519篇
  2003年   409篇
  2002年   393篇
  2001年   250篇
  2000年   233篇
  1999年   231篇
  1998年   169篇
  1997年   138篇
  1996年   124篇
  1995年   98篇
  1994年   97篇
  1993年   82篇
  1992年   57篇
  1991年   51篇
  1990年   41篇
  1989年   36篇
  1988年   47篇
  1987年   30篇
  1986年   21篇
  1985年   29篇
  1984年   52篇
  1983年   32篇
  1982年   41篇
  1981年   36篇
  1980年   42篇
  1979年   40篇
  1978年   23篇
  1977年   26篇
  1976年   25篇
  1974年   15篇
排序方式: 共有10000条查询结果,搜索用时 937 毫秒
1.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   
2.
《Cell reports》2020,30(3):725-738.e4
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
3.
Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.  相似文献   
4.
5.
The oxidized B chain of insulin was used as a simple model for further consideration of limited proteolysis with low substrate:enzyme ratios. With low B chain:trypsin ratios, the ordinarily slower cleavage rate of the -Lys29-Ala30 bond essentially equaled the cleavage saturation rate of the -Arg22-Gly23 bond. This led to the disappearance of octapeptide which ordinarily forms most rapidly. Heptapeptide and alanine, formed mainly by cleavage of the octapeptide, decreased somewhat at high enzyme relative levels. Trypsin added to B chain formed a single chromatographic peak.  相似文献   
6.
One model for the timing of cytokinesis is based on findings that p34(cdc2) can phosphorylate myosin regulatory light chain (LC20) on inhibitory sites (serines 1 and 2) in vitro (Satterwhite, L.L., M.H. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), and this inhibition is proposed to delay cytokinesis until p34(cdc2) activity falls at anaphase. We have characterized previously several kinase activities associated with the isolated cortical cytoskeleton of dividing sea urchin embryos (Walker, G.R., C.B. Shuster, and D.R. Burgess. 1997. J. Cell Sci. 110:1373-1386). Among these kinases and substrates is p34(cdc2) and LC20. In comparison with whole cell activity, cortical H1 kinase activity is delayed, with maximum levels in cortices prepared from late anaphase/telophase embryos. To determine whether cortical-associated p34(cdc2) influences cortical myosin II activity during cytokinesis, we labeled eggs in vivo with [(32)P]orthophosphate, prepared cortices, and mapped LC20 phosphorylation through the first cell division. We found no evidence of serine 1,2 phosphorylation at any time during mitosis on LC20 from cortically associated myosin. Instead, we observed a sharp rise in serine 19 phosphorylation during anaphase and telophase, consistent with an activating phosphorylation by myosin light chain kinase. However, serine 1,2 phosphorylation was detected on light chains from detergent-soluble myosin II. Furthermore, cells arrested in mitosis by microinjection of nondegradable cyclin B could be induced to form cleavage furrows if the spindle poles were physically placed in close proximity to the cortex. These results suggest that factors independent of myosin II inactivation, such as the delivery of the cleavage stimulus to the cortex, determine the timing of cytokinesis.  相似文献   
7.
8.
9.
10.
The series Staphyliniformia is one of the mega‐diverse groups of Coleoptera, but the relationships among the main families are still poorly understood. In this paper we address the interrelationships of staphyliniform groups, with special emphasis on Hydrophiloidea and Hydraenidae, based on partial sequences of the ribosomal genes 18S rDNA and 28S rDNA. Sequence data were analysed with parsimony and Bayesian posterior probabilities, in an attempt to overcome the likely effect of some branches longer than the 95% cumulative probability of the estimated normal distribution of the path lengths of the species. The inter‐family relationships in the trees obtained with both methods were in general poorly supported, although most of the results based on the sequence data are in good agreement with morphological studies. In none of our analyses a close relationship between Hydraenidae and Hydrophiloidea was supported, contrary to the traditional view but in agreement with recent morphological investigations. Hydraenidae form a clade with Ptiliidae and Scydmaenidae in the tree obtained with Bayesian probabilities, but are placed as basal group of Staphyliniformia (with Silphidae as subordinate group) in the parsimony tree. Based on the analysed data with a limited set of outgroups Scarabaeoidea are nested within Staphyliniformia. However, this needs further support. Hydrophiloidea s.str., Sphaeridiinae, Histeroidea (Histeridae + Sphaeritidae), and all staphylinoid families included are confirmed as monophyletic, with the exception of Hydraenidae in the parsimony tree. Spercheidae are not a basal group within Hydrophiloidea, as has been previously suggested, but included in a polytomy with other Hydrophilidae in the Bayesian analyses, or its sistergroup (with the inclusion of Epimetopidae) in the parsimony tree. Helophorus is placed at the base of Hydrophiloidea in the parsimony tree. The monophyly of Hydrophiloidea s.l. (including the histeroid families) and Staphylinoidea could not be confirmed by the analysed data. Some results, such as a placement of Silphidae as subordinate group of Hydraenidae (parsimony tree), or a sistergroup relationship between Ptiliidae and Scydmaenidae, appear unlikely from a morphological point of view.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号