首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67422篇
  免费   2923篇
  国内免费   1910篇
  2024年   60篇
  2023年   765篇
  2022年   903篇
  2021年   1335篇
  2020年   1432篇
  2019年   1866篇
  2018年   1729篇
  2017年   1263篇
  2016年   1375篇
  2015年   1872篇
  2014年   4341篇
  2013年   4602篇
  2012年   3677篇
  2011年   4956篇
  2010年   4329篇
  2009年   3091篇
  2008年   3118篇
  2007年   3204篇
  2006年   2848篇
  2005年   2611篇
  2004年   2583篇
  2003年   2125篇
  2002年   1492篇
  2001年   1078篇
  2000年   950篇
  1999年   1131篇
  1998年   1034篇
  1997年   945篇
  1996年   947篇
  1995年   1000篇
  1994年   973篇
  1993年   842篇
  1992年   818篇
  1991年   706篇
  1990年   590篇
  1989年   588篇
  1988年   551篇
  1987年   477篇
  1986年   432篇
  1985年   464篇
  1984年   536篇
  1983年   357篇
  1982年   490篇
  1981年   354篇
  1980年   389篇
  1979年   299篇
  1978年   180篇
  1977年   180篇
  1976年   126篇
  1972年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
2.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
3.
Although there are several reports on ultradian and circadian rhythms in newborns, we found only one report in which infradian periodicities are described for heart-rate measurements in the early stages of human development. Here, we report infradian rhythms in the monthly range in the sleep/wake cycle of four infants studied along 24 consecutive weeks. Our procedure was applied to sleep diary records from four healthy newborns. The data were arranged in binary time series representing sleep (?1) or wake (1) states. These time series were integrated in order to obtain the cumulative sleep/wake time. A measure of the sleep/wake ratio (SWR) was obtained by computing the average slope of the cumulative sleep/wake time. To extract periodicities we applied the Fourier periodogram to the temporal course of the SWR. We found a notorious difference in the SWR pattern among infants. In two infants the SWR showed a marked linear decay, spending more time asleep than awake, while in the two other infants oscillated near zero. We found robust oscillations in all children. In all cases the Fourier periodogram results present significant power in the infradian range. From these results, we suggest that sleep and wake durations are probably modulated by some internal stimuli.  相似文献   
4.
5.
《Ethnic and racial studies》2012,35(8):1427-1446
Abstract

The national census is often seen as a site of struggle for minorities seeking recognition and equality. Much less is known about the conditions under which ethnic majorities are galvanized to stake identity claims in the census. This article examines recent trends in New Zealand where an increasing number of people from the dominant New Zealand European group are redefining themselves as ethnic New Zealanders. Drawing from the literature on ethnic boundaries, we theorize the factors underlying the surge in New Zealander identification, and present census data to demonstrate its selective appeal. We also review patterns of national naming in North America and Australia to show that the New Zealander phenomenon reflects a broader shift by settler state majorities to reimagine their identities. The implications for ethnic counting in other contexts are briefly considered.  相似文献   
6.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
7.
We present a single-step procedure for the specific mass labeling of unblocked protein N termini. We show that the dye fluorescamine, which is commonly assumed to require mildly alkaline conditions for undergoing a nonspecific reaction with α- and ε-amino groups associated with amino acids, in fact shows a specific reaction only with α-amino groups present at protein N termini when mildly acidic conditions are used. We use this finding to label, identify, and sequence the trypsinolysis-derived N-terminal peptide of lysozyme, using only mass spectrometry, to illustrate how this method could be used with other proteins.  相似文献   
8.
《Developmental cell》2022,57(8):995-1008.e5
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   
9.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
10.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号