首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11221篇
  免费   1258篇
  国内免费   1565篇
  2024年   56篇
  2023年   259篇
  2022年   260篇
  2021年   336篇
  2020年   405篇
  2019年   445篇
  2018年   402篇
  2017年   435篇
  2016年   429篇
  2015年   392篇
  2014年   543篇
  2013年   705篇
  2012年   396篇
  2011年   482篇
  2010年   444篇
  2009年   598篇
  2008年   639篇
  2007年   685篇
  2006年   560篇
  2005年   571篇
  2004年   477篇
  2003年   426篇
  2002年   372篇
  2001年   305篇
  2000年   271篇
  1999年   239篇
  1998年   245篇
  1997年   205篇
  1996年   207篇
  1995年   199篇
  1994年   184篇
  1993年   184篇
  1992年   174篇
  1991年   137篇
  1990年   127篇
  1989年   119篇
  1988年   106篇
  1987年   88篇
  1986年   106篇
  1985年   119篇
  1984年   119篇
  1983年   86篇
  1982年   110篇
  1981年   101篇
  1980年   80篇
  1979年   68篇
  1978年   35篇
  1977年   32篇
  1974年   17篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Essential genes were identified in the 1.5-map unit dpy-5 unc-13 region of chromosome I in the Caenorhabditis elegans genome by rescuing lethal mutations using the duplication sDp2. In this paper, we report the mapping and complementation testing of lethal mutations, 45 of which identify 18 new, essential genes. This analysis brings the number of essential genes defined by the sDp2 rescue of lethal mutants to 97; 64 of these map between dpy-5 and unc-13. 61% of these essential genes are identified by more than one allele. Positioning of the mutations was done using the breakpoints of six duplications. The mutant phenotypes of 14 loci essential for fertility were characterized by Nomarski microscopy and DAPI staining. None of the mutants were rescued by wild-type male sperm. The cytological data showed that four genes produced mutants with defects in gonadogenesis, let-395, let-603, let-605 and let-610. Mutations in seven genes, let-355, let-367, let-384, let-513, let-544, let-545 and let-606, affected germ cell proliferation or gametogenesis. Mutants for the remaining three genes, let-370, let-599 and let-604, produced eggs that failed to develop or hatch, thereby acting as maternal effect lethals. We observed a nonrandom distribution of arrest phenotypes with regard to map position. Received: 8 May 1996 / Accepted : 27 January 1997  相似文献   
2.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
3.
Abstract A mutant strain of Schizosaccharomyces pombe lacking dipeptidyl aminopeptidase yspI was isolated from a strain already defective in aminopeptidase activity by means of a staining technique with the chromogenic substrate ala-pro-4-methoxy-β-naphthylamide to screen colonies for the absence of the enzyme. The defect segregated 2+ :2 in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Gene dosage experiments indicated that the mutation resides in the structural gene of dipeptidyl aminopeptidase yspI, dpa 1+. The dpa 1+ gene was located on chromosome III by using l m- fluorophen-ylalanine-induced haploidization and mitotic analysis. dpa1 mutants did not show any obvious phenotype under a variety of conditions tested.  相似文献   
4.
5.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
6.
7.
All of the common cytochalasins activate superoxide anion release and exocytosis of β-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 2 μM cytochalasin A, C >μM cytochalasin B ? 4–5 μM cytochalasin D, E. While maximal rates of O2? release and extents of exocytosis require extracellular calcium (1–2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibited either cytochalasin B- or E-stimulated O2? production with IC50 values of 5–10 mM and inhibition occurs whether Cl?, NO3? or SCN? is the anion added with Na+ or K+. Release of β-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl (IC50 ≈ 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of β-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2? or β-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   
8.
Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum ) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species ( D. incarnata , Pyrola rotundifolia , some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting (≥10 years) effects on cover and soil composition.  相似文献   
9.
The factors determining the onset and extent of reconstructive denaturation of proteins were considered by comparing circular dichroism (CD) data of seven proteins and previously published findings. The effects of sodium dodecyl sulfate (SDS) on the conformation of the following proteins were tested: lysozyme, the mitogens fromPhytolacca americana (fractions Pa2 and Pa4), lectin fromWistaria floribunda, ovine lutropin, a Bence Jones protein, and histone H2B. While the helix content of lysozyme was raised by SDS slightly, in the Bence Jones protein andW. floribunda lectin it increased from near zero to about 25–30%. In histone H2B the helix content was raised by SDS even to about 48%. However, no clear indication of helix formation could be observed in the mitogens and lutropin, even at low pH or 2.0–2.5. The tertiary structure of the proteins was perturbed by SDS. It was concluded that the reorganization of secondary structure of the proteins was favored by the following factors: (1) presence of helicogenic amino acid sequences in the protein, (2) availability of positively charged sites of the basic amino acids for interactions with the dodecyl ion, (3) absence of a large surplus of negatively charged sites on the surface of protein, and (4) absence of extensive disulfide cross-linking within the macromolecule. Both hydrophobic and electrostatic interactions occur in reconstructive denaturation, and the newly formed helices are stabilized by hydrophobic shielding by the alkyl chains of the alkyl sulfate.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号