首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66825篇
  免费   4354篇
  国内免费   6954篇
  2024年   210篇
  2023年   1202篇
  2022年   1601篇
  2021年   2021篇
  2020年   1874篇
  2019年   2653篇
  2018年   2262篇
  2017年   1878篇
  2016年   1839篇
  2015年   2016篇
  2014年   3205篇
  2013年   4416篇
  2012年   2673篇
  2011年   3092篇
  2010年   2434篇
  2009年   3065篇
  2008年   3131篇
  2007年   3422篇
  2006年   3118篇
  2005年   2837篇
  2004年   2508篇
  2003年   2325篇
  2002年   2072篇
  2001年   1674篇
  2000年   1538篇
  1999年   1400篇
  1998年   1447篇
  1997年   1275篇
  1996年   1102篇
  1995年   1076篇
  1994年   1056篇
  1993年   1006篇
  1992年   886篇
  1991年   868篇
  1990年   751篇
  1989年   683篇
  1988年   632篇
  1987年   526篇
  1986年   529篇
  1985年   774篇
  1984年   835篇
  1983年   443篇
  1982年   630篇
  1981年   594篇
  1980年   520篇
  1979年   391篇
  1978年   282篇
  1977年   292篇
  1976年   269篇
  1973年   219篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
2.
The literature relating to chemical, biochemical and biological aspects of the steroidal glycoalkaloid, α-tomatine, is reviewed. The alkaloid, which can be used as a starting compound for the synthesis of steroidal hormones, is toxic to a wide range of living organisms. The significance of tomatine to plants which elaborate it is discussed and some possible uses of the compound are mentioned.  相似文献   
3.
4.
5.
Shatsky  I. N. 《Molecular Biology》2001,35(4):536-543
Papers on the mechanisms of translation initiation in mammals studied by reconstruction of initiation complexes from individual components are reviewed. The author points to the constraints of this approach and to the pitfalls ignoring which one might come to erroneous conclusions and even artifacts. In addition, some methods employed in the field as well as some technical problems are discussed in the paper, together with the means of obviating them. The review could be a guidebook for newcomers into this quite labor-consuming field.  相似文献   
6.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
7.
8.
Chromatophores from Rhodopseudomonas capsulata cells grown semiaerobically in the dark oxidize NADH, succinate, and dichlorophenolindophenol. In the presence of N3? these activities are inhibited, but light induces oxidation of dichlorophenolindophenol with O2 as a terminal electron acceptor. Cyanide also inhibits electron transport but much higher concentrations are required to inhibit the photooxidation than the dark oxidation. The photooxidation was studied in a mutant strain of Rhodopseudomonas capsulata (YIV) which cannot grow anaerobically in the light, but similarly to the wild type, grows in the presence of oxygen. Chromatophores from YIV mutant catalyze photophosphorylation and dark oxidation activities with the same properties as those of the wild type. However, the rate of photooxidation in the mutant is only one-third that of the wild type. Based on the differential inhibitor sensitivity and on the mutation it is suggested that the photooxidase is different from the two respiratory oxidases and that this photooxidation activity might be essential for growth of the cells under anaerobic conditions in the light.  相似文献   
9.
10.
There is a lack of data on fatigue changes within 24 h among patients with multiple sclerosis. The purpose of this study was to evaluate the effect of time of day on central and peripheral fatigue during a continuous 2-min maximal voluntary contraction of the quadriceps muscle in women and men with multiple sclerosis (MS). We studied age-matched MS patients (range, 40–50 years). The inclusion criteria for patients were: a Kurtzke Expanded Disability Status score and a Fatigue Severity Scale score. We found a significant gender difference in central activation ratio (CAR) in the evening. At the end of the 2-min maximal voluntary contraction (MVC), the voluntary torque decreased by about 65% in men and women with MS in both the morning and evening. We also observed that, in women, CAR decreased markedly during the first 30 s in the evening test. The most interesting finding of our study is that central fatigue increased, whereas peripheral fatigue decreased markedly in the evening only in women. It remains unclear why women’s central fatigue is greater in the evening than in the morning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号