首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14522篇
  免费   958篇
  国内免费   563篇
  2023年   174篇
  2022年   207篇
  2021年   367篇
  2020年   454篇
  2019年   679篇
  2018年   697篇
  2017年   441篇
  2016年   314篇
  2015年   361篇
  2014年   810篇
  2013年   746篇
  2012年   496篇
  2011年   609篇
  2010年   473篇
  2009年   424篇
  2008年   510篇
  2007年   522篇
  2006年   435篇
  2005年   414篇
  2004年   332篇
  2003年   266篇
  2002年   234篇
  2001年   145篇
  2000年   134篇
  1999年   127篇
  1998年   104篇
  1997年   110篇
  1996年   95篇
  1995年   81篇
  1994年   90篇
  1993年   76篇
  1992年   66篇
  1991年   53篇
  1990年   71篇
  1989年   56篇
  1988年   54篇
  1986年   48篇
  1985年   516篇
  1984年   643篇
  1983年   374篇
  1982年   565篇
  1981年   432篇
  1980年   454篇
  1979年   359篇
  1978年   295篇
  1977年   242篇
  1976年   221篇
  1975年   222篇
  1974年   203篇
  1973年   156篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
2.
The nicotinic acid hydroxylase from Clostridium barkeri is a selenoenzyme, as evidenced by the copurification of selenium with enzyme activity. This conclusion is supported by data showing a 23-fold increase in nicotinic acid hydroxylase activity when C. barkeri was cultured in media supplemented with selenium. A labile, selenium-containing compound was released from the native protein by treatment with either chaotropic agents and heat or by heating alone. A stable selenium compound was formed when the enzyme was alkylated prior to denaturation. This compound had the same chromatographic properties as dialykyl selenide in a number of systems. The formation of dialkyl selenide upon alkylation is not consistent with the selenium moiety being selenocysteine. Thus, nicotinic acid hydroxylase represents a new type of selenoenzyme.  相似文献   
3.
Active Ca2+ uptake and the associated (Ca2+ + Mg2+)-ATPase activity were studied under the same conditions in an inside-out vesicle preparation of human red blood cells made essentially by the procedure of Quist and Roufogalis (Journal of Supramolecular Structure 6, 375-381, 1977). Some preparations were treated with 1 mM EDTA at 30 degrees to further deplete them of endogenous levels of calmodulin. As the Ca2+ taken up by the EDTA-treated inside-out vesicles, as well as the non-EDTA treated vesicles, was maintained after addition of 4.1 mM EGTA, the vesicles were shown to be impermeable to the passive leak of Ca2+ over the time course of the experiments. In the absence of added calmodulin, both active Ca2+ uptake and (Ca2+ + Mg2+)-ATPase were sensitive to free Ca2+ over a four log unit concentration range (0.7 microM to 300 microM Ca2+) at 6.4 mM MgCl2. Below 24 microM Ca2+ the stoichiometry of calcium transported per phosphate liberated was close to 2:1, both in EDTA and non-EDTA treated vesicles. Above 50 microM Ca2+ the stoichiometry approached 1:1. When MgCl2 was reduced from 6.4 mM to 1.0 mM, the stoichiometry remained close to 2:1 over the whole range of Ca2+ concentrations examined. In contrast to the results at 6.4 mM MgCl2, the Ca2+ pump was maximally activated at about 2 microM free Ca2+ and significantly inhibited above this concentration at 1 mM MgCl2. Calmodulin (0.5-2.0 microgram/ml) had little effect on the stoichiometry in any of the conditions examined. The possible significance of a variable stoichiometry of the Ca2+ pump in the red blood cell is discussed.  相似文献   
4.
5.
The following article provides evidence that cellular calcium controls the activity of glycogen synthase in all three major glycogen storage tissues; muscle, fat, and liver. Depletion of cellular calcium resulted in a moderate increase of glycogen synthase %I activities in intact mouse diaphragms, in isolated rat adipocytes, and in rat hepatocytes. The increase in %I activity of glycogen synthase was more pronounced when the uridine di-phosphoglucose concentration in the glycogen synthase assay was lowered from 4.4 mM to 0.2 mM. Calcium depletion resulted in an approximately two-fold decrease in the Ka values for glucose-6-phosphate in all three tissues. The activities of glycogen synthase also correlated well with the content of cell-associated calcium in rat hepatocytes. The glucose-6-phosphate independent activities of glycogen synthase in extracts of calcium-replete and calcium-depleted tissue approached the same value following the exposure to crude phosphoprotein phosphatase. The activities of glycogen phosphorylase decreased in calcium-depleted tissues and cells. Insulin stimulated the activity of glycogen synthase in muscle and fat in the absence of added sugar and in the absence of extracellular calcium. It is concluded that glycogen synthase is under the control of calcium in the three main glycogen storage tissues. The actions of calcium are probably mediated through the actions of calcium-sensitive protein kinase(s).  相似文献   
6.
Andreas Barth 《BBA》2007,1767(9):1073-1101
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.  相似文献   
7.
The mode of polymerization of two species of flagellins, flagellin A and flagellin B, in polar flagella of Caulobacter crescentus was examined. By immunological staining we found that 1 to 1.2 μm of the portion of the flagellar filament proximal to the cell was composed of flagellin B, whereas about 5 μm of the distal portion was composed of flagellin A. This result, together with the previous observation that a flagellin B-less mutant cannot form normal flagella but instead forms stubs in spite of their high level of flagellin A synthesis, indicates that flagellin B is very important for the formation of complete flagella and/or for the initiation of filament formation from the hook.  相似文献   
8.
Delays in the development of exploratory and locomotor behavior in neonatal male rats (up to 21 days of age) are shown to accrue as a consequence of low level lead exposure. Cross fostering experiments indicate that these delays are primarily due to prenatal exposure. These Pb induced behavioral modifications appear to be associated with the delays in synaptogenesis and biochemical development of the cerebral cortex reported previously (4, 18). A new behavioral bioassay for detecting delays in brain development is described.  相似文献   
9.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   
10.
Compelling evidence suggests that low-density lipoprotein (LDL) is oxidized by cells within the arterial intima and that, once oxidized, it is profoundly atherogenic. The precise mechanism(s) by which cells promote the oxidation of LDL in vivo are not known; in vitro, however, oxidation of LDL can be enhanced by a number of differing mechanisms, including reaction with free and protein-bound metal ions, thiols, reactive oxygen species, lipoxygenase, myeloperoxidase and peroxynitrite. This review is concerned with the mechanisms by which cells enhance the oxidation of LDL in the presence of transition metals; in particular, the regulation, pro- and anti-oxidant consequences, and mechanism of action of cellular thiol production are examined, and contrasted with thiol-independent oxidation of LDL in the presence of transition metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号