首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15474篇
  免费   750篇
  国内免费   444篇
  2023年   134篇
  2022年   244篇
  2021年   299篇
  2020年   303篇
  2019年   356篇
  2018年   451篇
  2017年   268篇
  2016年   302篇
  2015年   464篇
  2014年   793篇
  2013年   987篇
  2012年   538篇
  2011年   707篇
  2010年   605篇
  2009年   619篇
  2008年   635篇
  2007年   666篇
  2006年   589篇
  2005年   531篇
  2004年   491篇
  2003年   456篇
  2002年   415篇
  2001年   314篇
  2000年   297篇
  1999年   276篇
  1998年   263篇
  1997年   237篇
  1996年   203篇
  1995年   281篇
  1994年   245篇
  1993年   246篇
  1992年   237篇
  1991年   214篇
  1990年   209篇
  1989年   224篇
  1988年   232篇
  1987年   203篇
  1986年   162篇
  1985年   222篇
  1984年   351篇
  1983年   243篇
  1982年   296篇
  1981年   242篇
  1980年   204篇
  1979年   186篇
  1978年   62篇
  1977年   47篇
  1976年   43篇
  1974年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
1.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
2.
Abstract

The hepatitis C virus (HCV) encodes the p7 protein that oligomerizes to form an ion channel. The 63 amino acid long p7 monomer is an integral membrane protein predominantly found in the endoplasmic reticulum (ER). Although it is currently unknown whether p7 is incorporated into secreted virions, its presence is crucial for the release of infectious virus. The molecular and biophysical mechanism employed by the p7 ion channel is largely unknown, but in vivo it is likely to be embedded in membranes undergoing changes in lipid composition. In this study we analyze the influence of the lipid environment on p7 ion channel structure and function using electrophysiology and synchrotron radiation circular dichroism (SRCD) spectroscopy. We incorporated chemically synthesized p7 polypeptides into artificial planar membranes of various lipid compositions. A lipid bilayer composition comprising phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (4:1 PC:PE) led to burst-like patterns in the channel recordings with channel openings lasting up to 0.5 s. The reverse ratio of PC:PE (1:4) gave rise to individual channels continuously opening for up to 8 s. SRCD spectroscopy of p7 embedded into liposomes of corresponding lipid compositions suggests there is a structural effect of the lipid composition on the p7 protein.  相似文献   
3.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
4.
Kinetic parameters of 3-(3, 4-dichlorophenyl)-1, 1-dimethyl urea (DCMU)-induced inhibition of electron transport in chloroplast thylakoids isolated from Phaseolus vulgaris L. cv. Oregon 1604 were determined from analysis of a convergent, parallel electrical circuit. Through this analogue, the apparent affinity of the purported binding site for DCMU (K1) and the relative amount of DCMU-insensitive electron transport (vmax1/vo) were obtained using a reiterative non-linear least squares curve-fitting procedure. Exposure of thylakoids to heat caused a gradual increase in K1 (or decrease in the affinity of the thylakoid for DCMU) with an apparent activation energy of 134 kJ mol−1. Tryptic susceptibility of a protein region regulating K1 also decreased gradually with exposure to 45°C, suggesting that the heat-induced increase in K1 might be due to a protein conformational change. On the other hand, thylakoid exposure to 45°C resulted in a rapid (<5 min) irreversible increase in vmaxI/vo, which was also the apparent result of a conformational change in a region of the protein which regulates this function. These results are suggestive of the existence of differential thermal sensitivities of proteins within the thylakoids and, perhaps, of different regions within a single membrane protein.  相似文献   
5.
Y. Avi-Dor  R. Rott  R. Schnaiderman 《BBA》1979,545(1):15-23
The interrelation was studied between the phototransient absorbing maximally at 412 nm (M412) and light-induced proton release under steady-state conditions in aqueous suspensions of ‘purple membrane’ derived from Halobacterium halobium. The decay of M412 was slowed down by the simultaneous application of the ionophoric antibiotics valinomycin and beauvericin. The former had only slight activity alone and the latter was effective only in conjunction with valinomycin. The steady-state concentration of M412 which was formed on illumination was a direct function of the concentration of valinomycin. Maximum stabilization of M412 was obtained when the valinomycin was approximately equimolar with the bacteriorhodopsin. Addition of salts to the medium increased the number of protons released per molecule of M412 without affecting the level of M412 which was produced by continuous illumination. The effectiveness of the salts in this respect depended on the nature of the cation. Ca2+ and their antagonists La3+ and ruthenium red were found to have especially high affinity for the system. The extent of light-induced acidification could not be enhanced by increasing the pH of the medium from 6.5 to 7.8. The possible mechanism of action of the ionophores and of the cations on the photocycle and on the proton cycle is discussed.  相似文献   
6.
We previously reported the identification of DP-1 isoforms (α and β), which are structurally C-terminus-deleted ones, and revealed the low-level expression of these isoforms. It is known that wild-type DP-1 is degraded by the ubiquitin-proteasome system, but few details are known about the domains concerned with the protein stability/instability for the proteolysis of these DP-1 isoforms. Here we identified the domains responsible for the stability/instability of DP-1. Especially, the DP-1 “Stabilon” domain was a C-terminal acidic motif and was quite important for DP-1 stability. Moreover, we propose that this DP-1 Stabilon may be useful for the stability of other nuclear proteins when fused to them.  相似文献   
7.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
8.
《Cell reports》2020,30(4):1129-1140.e5
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   
9.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号