首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16529篇
  免费   1703篇
  国内免费   2019篇
  2024年   69篇
  2023年   272篇
  2022年   551篇
  2021年   877篇
  2020年   636篇
  2019年   810篇
  2018年   689篇
  2017年   557篇
  2016年   730篇
  2015年   1078篇
  2014年   1252篇
  2013年   1308篇
  2012年   1544篇
  2011年   1414篇
  2010年   917篇
  2009年   817篇
  2008年   936篇
  2007年   839篇
  2006年   774篇
  2005年   680篇
  2004年   621篇
  2003年   613篇
  2002年   531篇
  2001年   310篇
  2000年   257篇
  1999年   202篇
  1998年   126篇
  1997年   110篇
  1996年   101篇
  1995年   65篇
  1994年   99篇
  1993年   57篇
  1992年   64篇
  1991年   43篇
  1990年   44篇
  1989年   40篇
  1988年   34篇
  1987年   29篇
  1986年   21篇
  1985年   41篇
  1984年   15篇
  1983年   18篇
  1982年   17篇
  1981年   3篇
  1979年   6篇
  1978年   5篇
  1976年   3篇
  1975年   7篇
  1974年   7篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   
2.
We released seeds of two sympatric tree species, Corylus mandshurica (seed with thinner seed hull, higher nutrition) and C. heterophylla (seeds with thicker seed hull, lower nutrition) in the masting year of C. mandshurica in 2008, and C. heterophylla in 2009, respectively, to investigate how seed masting of the two sympatric Corylus species affects seed removal and dispersal fitness of the two species differently at both intra- and inter-specific levels. At intra-specific level, the authors found mast seeding of both C. mandshurica and C. heterophylla significantly reduced seed removal, seed consumption, but increased seed dispersal distance and seed dispersal fitness of the released seeds. Mast seeding of C. mandshurica increased seed caching of C. mandshurica. At inter-specific level, the authors found mast seeding of C. mandshurica reduced seed removal of C. heterophylla, but mast seeding of C. heterophylla did not significantly reduce seed removal of C. mandshurica. Mast seeding of C. mandshurica reduced seed consumption of C. heterophylla, while mast seeding of C. heterophylla reduced seed consumption of C. mandshurica. We found mast seeding of C. mandshurica significantly reduced seed dispersal distance of C. heterophylla, while mast seeding of C. heterophylla significantly increased seed dispersal distance of C. mandshurica. We found that mast seeding of C. mandshurica significantly increased seed dispersal fitness of C. heterophylla, while mast seeding of C. heterophylla did not significantly increase seed dispersal fitness of C. mandshurica. More studies are needed to reveal the ecological consequences of mast seeding at inter-specific or community-level. Seed traits may attribute the differences of mast seeding at inter-specific level. Because seeds with thinner seed hull and higher nutrition were more harvested and eaten by rodents, mast seeding of C. mandshurica might have reduced seed removal and seed consumption, but increased dispersal fitness of C. heterophylla (seeds with thicker seed hull, lower nutrition). Therefore, synchrony among species is, or is not, selectively beneficial to the focus species depends on seed traits which determine gains from mast seeding at inter-specific level.  相似文献   
3.
4.
5.
6.
7.
8.
The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.  相似文献   
9.
Six bisindole alkaloids have been isolated from the leaves of Dyera costulata (Apocynaceae). One is the known ochrolifuanine A and the others are the novel ochrolifuanines E and F, and the 18-dehydroochrolifuanines A, E and F.  相似文献   
10.
As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists’ attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号