首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21973篇
  免费   2788篇
  国内免费   12篇
  2021年   280篇
  2019年   223篇
  2018年   273篇
  2017年   239篇
  2016年   364篇
  2015年   613篇
  2014年   671篇
  2013年   886篇
  2012年   1007篇
  2011年   1071篇
  2010年   687篇
  2009年   670篇
  2008年   878篇
  2007年   839篇
  2006年   767篇
  2005年   777篇
  2004年   776篇
  2003年   706篇
  2002年   678篇
  2001年   675篇
  2000年   719篇
  1999年   620篇
  1998年   278篇
  1997年   279篇
  1996年   262篇
  1995年   238篇
  1994年   261篇
  1993年   227篇
  1992年   505篇
  1991年   497篇
  1990年   498篇
  1989年   464篇
  1988年   431篇
  1987年   393篇
  1986年   331篇
  1985年   344篇
  1984年   315篇
  1983年   296篇
  1982年   226篇
  1981年   246篇
  1980年   210篇
  1979年   324篇
  1978年   269篇
  1977年   243篇
  1976年   243篇
  1975年   232篇
  1974年   236篇
  1973年   247篇
  1972年   228篇
  1971年   218篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Exposure of male Syrian hamsters (Mesocricetus auratus) for 10 weeks to short photoperiod (SP) providing 10 hr light: 14 hr darkness (10:14 LD) produced a significant reduction in the weights of the reproductive organs, plasma thyroxine (T4) levels and free T4 index (FT4I) compared to the values of animals exposed to long photoperiod (LP, 14:10 LD). C57bl male house mice (Mus musculus) kept in SP (10:14 LD) had reproductive organ weights equivalent to those of mice kept in long days (14:10 LD) and lower T3 uptake (T3U) values. Male gerbils (Meriones unguiculatus) exposed to 13 weeks of SP (10:14 LD) had lower body weights, testes and seminal vesicle weights and higher T3U values compared to LP (14:10 LD) controls. However, no effect was seen on plasma T4 and triiodothyronine (T3) values nor the FT4I and free T3 index (FT3I). White-footed male mice (Peromyscus leucopus) exposed to SP (8:16 LD) had significantly lower testes and seminal vesicle weights while plasma T4 and T3 levels were unaffected. Snell strain house mice (Mus musculus) exposed to SP (8:16 LD) had normal reproductive organ weights compared to the values of LP-exposed (16:8 LD) control animals. However, there was a significant depression in T3 and in the FT3I in the SP animals.  相似文献   
2.
The Fis protein: it''s not just for DNA inversion anymore   总被引:36,自引:0,他引:36  
  相似文献   
3.
(Z)- and (E)-4-amino-2-(trifluoromethyl)-2-butenoic acid (4 and 5, respectively) were synthesized and investigated as potential mechanism-based inactivators of gamma-aminobutyric acid aminotransferase (GABA-AT) in a continuing effort to map the active site of this enzyme. The core alpha-trifluoromethyl-alpha,beta-unsaturated ester moiety was prepared via a Reformatsky/reductive elimination coupling of the key intermediates tert-butyl 2,2-dichloro-3,3,3-trifluoropropionate and N,N-bis(tert-butoxy-carbonyl)glycinal. Both 4 and 5 inhibited GABA-AT in a time-dependent manner, but displayed non-pseudo-first-order inactivation kinetics; initially, the inactivation rate increased with time. Further investigation demonstrated that the actual inactivator is generated enzymatically from 4 or 5. This inactivating species is released from the active site prior to inactivation, and as a result, 4 and 5 cannot be defined as mechanism-based inactivators. Furthermore, 4 and 5 are alternate substrates for GABA-AT, transaminated by the enzyme with Km values of 0.74 and 20.5 mM, respectively. Transamination occurs approximately 276 and 305 times per inactivation event for 4 and 5, respectively. The enzyme also catalyzes the elimination of the fluoride ion from 4 and 5. A mechanism to account for these observations is proposed.  相似文献   
4.
5.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   
6.
We report the phosphorylation of lens membranes with a cAMP-dependent protein kinase isolated from bovine lenses. The holoenzyme was eluted from DEAE agarose at less than 100 mM NaCl and from gel filtration columns with a relative molecular weight of 180 000. The regulatory subunit was identified with the affinity label 8-azido-[32P]cAMP. Four focusing variants with relative molecular weights of 49 000 were seen on two-dimensional gels. The catalytic subunit was purified approx. 5000-fold and migrated at 42 000 Mr on SDS gels. Based on these observations, the enzyme is classified as a Type I cAMP-dependent protein kinase. Purified lens plasma membranes were incubated with the holoenzyme or its catalytic subunit in the presence of 32P-labeled ATP. Several membrane proteins, including the major lens membrane polypeptide, MP26, were shown to be substrates for the kinase in this reaction. MP26 appears to be the major component of intercellular junctions in the lens. Studies with protease treatments on labeled membranes appeared to localize the phosphorylation sites to the cytoplasmic side of the membrane.  相似文献   
7.
Insulin-like growth factor-1 (IGF-1) is a serum protein which unexpectedly folds to yield two stable tertiary structures with different disulphide connectivities; native IGF-1 [18-61,6-48,47-52] and IGF-1 swap [18-61,6-47, 48-52]. Here we demonstrate in detail the biological properties of recombinant human native IGF-1 and IGF-1 swap secreted from Saccharomyces cerevisiae. IGF-1 swap had a approximately 30 fold loss in affinity for the IGF-1 receptor overexpressed on BHK cells compared with native IGF-1.The parallel increase in dose required to induce negative cooperativity together with the parallel loss in mitogenicity in NIH 3T3 cells implies that disruption of the IGF-1 receptor binding interaction rather than restriction of a post-binding conformational change is responsible for the reduction in biological activity of IGF-1 swap. Interestingly, the affinity of IGF-1 swap for the insulin receptor was approximately 200 fold lower than that of native IGF-1 indicating that the binding surface complementary to the insulin receptor (or the ability to attain it) is disturbed to a greater extent than that to the IGF-1 receptor. A 1.0 ns high-temperature molecular dynamics study of the local energy landscape of IGF-1 swap resulted in uncoiling of the first A-region alpha-helix and a rearrangement in the relative orientation of the A- and B-regions. The model of IGF-1 swap is structurally homologous to the NMR structure of insulin swap and CD spectra consistent with the model are presented. However, in the model of IGF-1 swap the C-region has filled the space where the first A-region alpha-helix has uncoiled and this may be hindering interaction of Val44 with the second insulin receptor binding pocket.  相似文献   
8.
9.
10.

Background  

Introductions of non-native tiger salamanders into the range of California tiger salamanders have provided a rare opportunity to study the early stages of secondary contact and hybridization. We produced first- and second-generation hybrid salamanders in the lab and measured viability among these early-generation hybrid crosses to determine the strength of the initial barrier to gene exchange. We also created contemporary-generation hybrids in the lab and evaluated the extent to which selection has affected fitness over approximately 20 generations of admixture. Additionally, we examined the inheritance of quantitative phenotypic variation to better understand how evolution has progressed since secondary contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号