首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5291篇
  免费   529篇
  5820篇
  2022年   37篇
  2021年   68篇
  2019年   55篇
  2018年   77篇
  2017年   61篇
  2016年   93篇
  2015年   183篇
  2014年   184篇
  2013年   231篇
  2012年   328篇
  2011年   286篇
  2010年   207篇
  2009年   189篇
  2008年   256篇
  2007年   256篇
  2006年   248篇
  2005年   237篇
  2004年   224篇
  2003年   218篇
  2002年   204篇
  2001年   112篇
  2000年   100篇
  1999年   96篇
  1998年   70篇
  1997年   61篇
  1996年   52篇
  1995年   59篇
  1994年   48篇
  1993年   43篇
  1992年   87篇
  1991年   88篇
  1990年   79篇
  1989年   63篇
  1988年   67篇
  1987年   36篇
  1986年   64篇
  1985年   57篇
  1984年   71篇
  1983年   53篇
  1982年   68篇
  1981年   45篇
  1980年   46篇
  1979年   46篇
  1978年   47篇
  1977年   51篇
  1976年   34篇
  1975年   43篇
  1974年   57篇
  1973年   41篇
  1972年   43篇
排序方式: 共有5820条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.  相似文献   
5.
The growth-associated protein B-50 also termed GAP-43, F1, pp46, P-57 and neuromodulin is a nervous tissuespecific protein kinase C (PKC) substrate that is considered to play a major role in neurite formation, regeneration, and neuroplasticity. We describe the isolation of seven mouse monoclonal antibodies (Mabs) directed against B-50. The Mabs are produced against the bovine B-50, selected by ELISA for cross-reactivity with its human counterpart, and evaluated on Western blots in comparison with the well-characterized affinity-purified rabbit polyclonal antibodies to rat-B-50. The Western blots show that the Mabs NM1, NM4, and NM6 recognize specifically the B-50 of bovine, human, and rat brain extract and the purified PKC phosphorylated and unphosphorylated rat B-50 isoforms. The Mabs NM2 and NM3 cross-react with bovine B-50 immunoreactive c-kinase substrate (BICKS), a protein sharing a 17 amino acid sequence homology with B-50. Two Mabs are useful for the detection of B-50 immunoreactivity in formalin-fixed human and rat brain tissues. In human specimen of the hippocampus, a characteristic neuropil distribution of B-50 is detected by the Mabs. In human muscle, Mabs reveal B-50 in nerve bundles and in axons at motor end plates. Thus, these Mabs are useful in investigating the function and localization of the B-50 protein.  相似文献   
6.
Abstract— In contrast to mouse brain, the content of putrescine in fish brain considerably exceeds that of spermine and spermidine. While we observed constant protein, RNA and spermidine concentrations in fish brains of weights between 60 and 800 mg, DNA and spermine concentrations diminished with increasing brain weight, the content of spermine per cell being constant throughout life. It can be concluded from our results that growth of fish brain results both from cell enlargement and cell proliferation. The concomitant changes of spermine and DNA concentrations in the growing fish brain are the first example of a direct quantitative relationship between these cell constituents and provides evidence on their possible functional relationship in the cell nucleus.  相似文献   
7.
Cyclic GMP causes the release of endogenous Ca2+ from rod outer segments, whose plasma membrane has been made permeable, or from isolated discs. Approximately 11,000 Ca2+ ions are released per disc at saturating concentrations of cyclic GMP. The velocity and the amplitude of the release of Ca2+ are dependent on the concentration of cyclic GMP. The maximal rate of the Ca2+ efflux is approximately 7 X 10(4) Ca2+ ions s-1 rod-1. The Ca2+ release by cyclic GMP is independent of light. The activation of the efflux occurred within a narrow range of the cyclic GMP concentration (30-80 microM) and does not obey a simple Michaelis-Menten scheme. Instead, the kinetic analysis of the Ca2+ efflux suggests that a minimum number of 2 molecules of cyclic GMP activates the ion conductance in a cooperative fashion. The release of Ca2+ by cyclic GMP requires a gradient of Ca2+ ions across the disc membrane. If the endogenous Ca2+ gradient is dissipated by means of the ionophore A23187, the release of Ca2+ by cyclic GMP is abolished. Ca2+ is released by analogues of cyclic GMP which are either modified at the 8-carbon position of the imidazole ring or by the deaza-analogue of cyclic GMP. Congeners of cyclic GMP which are modified at the ribose, phosphodiester, or pyrimidine portion of the molecule are ineffective. The hydrolysis of cyclic GMP by the light-regulated phosphodiesterase of rod outer segments is not a necessary condition for the Ca2+ release because 8-bromo-cyclic GMP, a congener resistant to hydrolysis, is a more powerful activator of the release than cyclic GMP itself. Ca2+ release by cyclic GMP is inhibited by organic and inorganic blockers of Ca2+ channels. The l-stereoisomer of cis-diltiazem blocks the release of Ca2+ at micromolar concentrations, whereas the d-form is much less effective. These results suggest that disc membranes contain a cationic conductance which is permeable to Ca2+ ions and which is regulated through the cooperative binding of at least 2 molecules of cyclic GMP to regulatory sites of the transport protein. By this mechanism, subtle changes in the concentration of cyclic GMP could promote large changes in the flux of Ca2+ ions across the disc membrane.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号