首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An antibiotic-resistant strain of Pseudomonas fluorescens, that suppresses take-all of wheat, was used to study the distribution of the bacteria on seminal roots of wheat after being introduced onto seeds. Cells of P. fluorescens were isolated from the entire length of the root, and density of the introduced bacteria declined with the distance from the base of the root. Maximum populations of 105 to 106 CFU and 103 to 105 CFU per cm of root were detected on sections of roots near the seed and root tip, respectively. The introduced bacteria competed well with indigenous bacteria, comprising at least 25% of the fluorescent pseudomonads detected by plate counts for 48 days after planting.  相似文献   

2.
The large-scale release of wild-type or genetically modified bacteria into the environment for control of plant diseases or for bioremediation entails the potential risk of groundwater contamination by these microorganisms. For a model study on patterns of vertical transport of bacteria under field conditions, the biocontrol strain Pseudomonas fluorescens CHA0, marked with a spontaneous resistance to rifampin (CHA0-Rif), was applied to a grass-clover ley plot (rotation grassland) and a wheat plot. Immediately after bacterial application, heavy precipitation was simulated by sprinkling, over a period of 8 h, 40 mm of water containing the mobile tracer potassium bromide and the dye Brilliant Blue FCF to identify channels of preferential flow. One day later, a 150-cm-deep soil trench was dug and soil profiles were prepared. Soil samples were extracted at different depths of the profiles and analyzed for the number of CHA0-Rif cells and the concentration of bromide and Brilliant Blue FCF. Dye coverage in the soil profiles was estimated by image analysis. CHA0 was present at 10(sup8) CFU/g in the surface soil, and 10(sup6) to 10(sup7) CFU/g of CHA0 was detected along macropores between 10 and 150 cm deep. Similarly, the concentration of the tracer bromide along the macropores remained at the same level below 20 cm deep. Dye coverage in lower soil layers was higher in the ley than in the wheat plot. In nonstained parts of the profiles, the number of CHA0-Rif cells was substantially smaller and the bromide concentration was below the detection limit in most samples. We conclude that after heavy rainfall, released bacteria are rapidly transported in large numbers through the channels of preferential flow to deeper soil layers. Under these conditions, the transport of CHA0-Rif is similar to that of the conservative tracer bromide and is affected by cultural practice.  相似文献   

3.
Involvement of nitrate reductase and pyoverdine in the competitiveness of the biocontrol strain Pseudomonas fluorescens C7R12 was determined, under gnotobiotic conditions, in two soil compartments (bulk and rhizosphere soil), with the soil being kept at two different values of matric potential (−1 and −10 kPa). Three mutants affected in the synthesis of either the nitrate reductase (Nar), the pyoverdine (Pvd), or both (Nar Pvd) were used. The Nar and Nar Pvd mutants were obtained by site-directed mutagenesis of the wild-type strain and of the Pvd mutant, respectively. The selective advantage given by nitrate reductase and pyoverdine to the wild-type strain was assessed by measuring the dynamic of each mutant-to-total-inoculant (wild-type strain plus mutant) ratio. All three mutants showed a lower competitiveness than the wild-type strain, indicating that both nitrate reductase and pyoverdine are involved in the fitness of P. fluorescens C7R12. The double mutant presented the lowest competitiveness. Overall, the competitive advantages given to C7R12 by nitrate reductase and pyoverdine were similar. However, the selective advantage given by nitrate reductase was more strongly expressed under conditions of lower aeration (−1 kPa). In contrast, the selective advantage given by nitrate reductase and pyoverdine did not differ in bulk and rhizosphere soil, indicating that these bacterial traits are not specifically involved in the rhizosphere competence but rather in the saprophytic ability of C7R12 in soil environments.  相似文献   

4.
Bacteriocin LlpA, produced by Pseudomonas sp. strain BW11M1, is a peculiar antibacterial protein due to its homology to mannose-binding lectins mostly found in monocots (A. H. A. Parret, G. Schoofs, P. Proost, and R. De Mot, J. Bacteriol. 185:897-908, 2003). Biocontrol strain Pseudomonas fluorescens Pf-5 contains two llpA-like genes, named llpA1Pf-5 and llpA2Pf-5. Recombinant Escherichia coli cells expressing llpA1Pf-5 or llpA2Pf-5 acquired bacteriocin activity and secreted a 31-kDa protein cross-reacting with LlpABW11M1 antibodies. Antibacterial activity of the recombinant proteins was evidenced by gel overlay assays. Analysis of the antimicrobial spectrum indicated that LlpA1Pf-5 and LlpA2Pf-5 are able to inhibit P. fluorescens strains, as well as the related mushroom pathogen Pseudomonas tolaasii. LlpA-type bacteriocins are characterized by a domain structure consisting of tandem monocot mannose-binding lectin (MMBL) domains. Molecular phylogeny of these MMBL domains suggests that the individual MMBL domains within an LlpA protein have evolved separately toward a specific, as yet unknown, function or, alternatively, were acquired from different ancestral sources. Our observations are consistent with earlier observations, which hinted that MMBL-like bacteriocins represent a new family of antibacterial proteins, probably with a novel mode of action.  相似文献   

5.
The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in suppression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producing P. fluorescens, suppresses numbers of both sedentary and migratory plant-parasitic nematodes. An experiment was conducted in steam-heated soil and included two seed treatments (with Wood1R and a control without the bacterium) and six plant-nematode combinations which were Meloidogyne incognita on cotton, corn, and soybean; M. arenaria on peanut; Heterodera glycines on soybean; and Paratrichodorus minor on corn. Wood 1R had no effect on final numbers of M. arenaria, P. minor, or H. glycines; however, final numbers of M. incognita were lower when seeds were treated with Wood1R than left untreated, and this reduction was consistent among host plants. Population densities of Wood1R were greater on the roots of corn than on the other crops, and the bacterium was most effective in suppressing M. incognita on corn, with an average reduction of 41%. Despite high population densities of Wood1R on corn, the bacterium was not able to suppress numbers of P. minor. When comparing the suppression of M. incognita on corn in natural and steam-heated soil, egg production by the nematode was suppressed in natural compared to steamed soil, but the presence of Wood1R did not result in additional suppression of the nematodes in the natural soil. These data indicate that P. fluorescens strain Wood1R has the capacity to inhibit some populations of plant-parasitic nematodes. However, consistent suppression of nematodes in natural soils seems unlikely.  相似文献   

6.
We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism''s unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.  相似文献   

7.
Little information is available concerning the occurrence of natural transformation of bacteria in soil, the frequency of such events, and the actual role of this process on bacterial evolution. This is because few bacteria are known to possess the genes required to develop competence and because the tested bacteria are unable to reach this physiological state in situ. In this study we found that two soil bacteria, Agrobacterium tumefaciens and Pseudomonas fluorescens, can undergo transformation in soil microcosms without any specific physical or chemical treatment. Moreover, P. fluorescens produced transformants in both sterile and nonsterile soil microcosms but failed to do so in the various in vitro conditions we tested. A. tumefaciens could be transformed in vitro and in sterile soil samples. These results indicate that the number of transformable bacteria could be higher than previously thought and that these bacteria could find the conditions necessary for uptake of extracellular DNA in soil.  相似文献   

8.
9.
The mineralization of phenanthrene in pure cultures of a Pseudomonas fluorescens strain, isolated from soil, was measured in the presence of soil humic fractions and montmorillonite. Humic acid and clay, either separately or in combination, shortened the acclimation phase. A higher mineralization rate was measured in treatments with humic acid at 100 μg/ml. Humic acid at 10 μg/ml stimulated the transformation only in the presence of 10 g of clay per liter. We suggest that sorption of phenanthrene to these soil components may result in a higher concentration of substrate in the vicinity of the bacterial cells and therefore may increase its bioavailability.  相似文献   

10.
Strain PJ0210, identified as Pseudomonas fluorescens, inhibited Bipolaris maydis both in vitro. The absence of detectable inhibitory substances assayed by a variety of methods indicated nutrient competition as the operative component of antagonism. This was further supported by observations of reduced inhibition by addition of glucose both in vitro and in vivo. Strain PJ0210 was adaptecd to the phyllosphere showing good survivability and colonizing ability both inplant house and field trials. Disease suppression was generally correlated with population sizes of strain PJ0210. Population sizes in the field were lower than those recorded in the plant house with a concomitant reduction in disease suppressive ability, of strain PJ0210.  相似文献   

11.
The effects of oxygen limitation, low redox potential, and high NaCl stress for 7 days in vitro on the rifampin-resistant biocontrol inoculant Pseudomonas fluorescens CHA0-Rif and its subsequent persistence in natural soil for 54 days were investigated. Throughout the experiment, the strain was monitored using total cell counts (immunofluorescence microscopy), Kogure's direct viable counts, and colony counts (on rifampin-containing plates). Under in vitro conditions, viable-but-nonculturable (VBNC) cells of CHA0-Rif were obtained when the strain was exposed to a combination of low redox potential (230 mV) and oxygen limitation. This mimics a situation observed in the field, where VBNC cells of the strain were found in the waterlogged soil layer above the plow pan. Here, VBNC cells were also observed in vitro when CHA0-Rif was subjected to high NaCl levels (i.e., NaCl at 1.5 M but not 0.7 M). In all treatments, cell numbers remained close to the inoculum level for the first 12 days after inoculation of soil, regardless of the cell enumeration method used, but decreased afterwards. At the last two samplings in soil, VBNC cells of CHA0-Rif were found in all treatments except the one in which log-phase cells had been used. In the two treatments that generated high numbers of VBNC cells in vitro, VBNC cells did not display enhanced persistence compared with culturable cells once introduced into soil, which suggests that this VBNC state did not represent a physiological strategy to improve survival under adverse conditions.  相似文献   

12.
Increasingly, focus has been directed towards the use of microorganisms as biological control agents to combat fungal disease, as an alternative to chemical fungicides. Pseudomonas fluorescens SBW25 is one bacterial strain that has been demonstrated to promote plant growth by biocontrol of pathogenic fungi. To understand the mode of action of this bacterium, information regarding its localization and metabolic activity on plants is important. In this study, a gfp/luxAB-tagged derivative of P. fluorescens SBW25, expressing the green fluorescent protein (GFP) and bacterial luciferase, was monitored during colonization of wheat starting from seed inoculation. Since bacterial luciferase is dependent on cellular energy reserves for phenotypic expression, metabolically active cells were detected using this marker. In contrast, the stable GFP fluorescence phenotype was used to detect the cells independently of their metabolic status. The combination of these two markers enabled P. fluorescens SBW25 cells to be monitored on wheat plants to determine their specific location and metabolic activity. Studies on homogenized wheat plant parts demonstrated that the seed was the preferred location of P. fluorescens SBW25 during the 65-day time period studied, but the leaves and roots were also colonized. Interestingly, the bacteria were also found to be metabolically active on all plant parts examined. In situ localization of P. fluorescens SBW25 using a combination of different microscopic techniques confirmed the preference for the cells to colonize specific regions of the seed. We speculate that the colonization pattern of P. fluorescens SBW25 can be linked to the mechanism of protection of plants from fungal infection.  相似文献   

13.
The abundance of Pratylenchus scribneri in soil and root habitats was compared in potato and corn plots during 1986-88. Nematodes were extracted from 100-cm³ soil samples and the roots contained within the samples. The percentage of the population recovered from soil, similar among years and crops, averaged ca. 50% at the beginning and end of the growing season and ca. 20% from early to late season. Proportionately more adults and fourth-stage juveniles than younger stages were located outside roots until harvest. In a related study, nematodes were isolated from the roots, root surfaces, and soil associated with roots of whole corn and potato plants sampled from the field. Nematode population estimates calculated from the whole plant samples were generally lower than those based on soil cores, but showed similar patterns of population growth. Nematode density per gram dry weight was highest in roots, intermediate on root surfaces, and lowest in soil. Estimates of the absolute abundance of nematodes in each of the three habitats were highest in roots or soil, depending on the sampling date, and lowest on root surfaces. This study demonstrates that P. scribneri inhabits soil environments even when host roots are present and illustrates the importance of considering all possible habitats when estimating the size of Pratylenchus spp. populations.  相似文献   

14.
Volume 63, no. 2, p. 602: the article title should read as shown above. [This corrects the article on p. 602 in vol. 63.].  相似文献   

15.
Previously we described a novel gene tagging method, using the moc (mannityl opine catabolism) region from the Agrobacterium tumefaciens Ti plasmid pTi15955, to identify microorganisms destined for release into the environment. Here, we used the engineered strain Pseudomonas fluorescens PF5MT12 carrying the moc region integrated into the bacterial chromosome to demonstrate the usefulness of the markers for detection and direct selection of marked organisms present in soil samples. Using this system, we routinely detected population levels as low as 10(sup2) CFU per g of soil sampled. In addition to direct selection, we developed an immunologically based assay using MOP cyclase, a unique enzyme associated with moc, as the epitope for detecting the tagged organism. The colony immunoblot assay proved to be highly specific and without any false-positive signals when used to identify organisms cultured from soil on nonselective medium. The numbers of colonies that were immunoreactive with the anti-MOP cyclase antibody were essentially equal to those that grew out on selection plates. This indicates that MOP cyclase can be used as a marker and that we can use nonselective medium to retrieve the marked genetically engineered microorganisms and then identify them by using colony immunoblot assays. These direct selection and colony immunoblot methods provide a sensitive and accurate strategy for identifying and enumerating marked organisms recovered from soil samples. We also developed a rapid assay for MOP cyclase that does not require cell permeabilization with toluene. This assay can be used to verify tagged organisms isolated by other methods or to screen large numbers of colonies for the tag following nonselective isolation.  相似文献   

16.
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.  相似文献   

17.
Microbial adaptation to environmental conditions is a complex process, including acquisition of positive traits through horizontal gene transfer or the modification of existing genes through duplication and/or mutation. In this study, we examined the adaptation of a Pseudomonas fluorescens isolate (R124) from the nutrient-limited mineral environment of a silica cave in comparison with P. fluorescens isolates from surface soil and the rhizosphere. Examination of metal homeostasis gene pathways demonstrated a high degree of conservation, suggesting that such systems remain functionally similar across chemical environments. The examination of genomic islands unique to our strain revealed the presence of genes involved in carbohydrate metabolism, aromatic carbon metabolism, and carbon turnover, confirmed through phenotypic assays, suggesting the acquisition of potentially novel mechanisms for energy metabolism in this strain. We also identified a twitching motility phenotype active at low-nutrient concentrations that may allow alternative exploratory mechanisms for this organism in a geochemical environment. Two sets of candidate twitching motility genes are present within the genome, one on the chromosome and one on a plasmid; however, a plasmid knockout identified the functional gene as being present on the chromosome. This work highlights the plasticity of the Pseudomonas genome, allowing the acquisition of novel nutrient-scavenging pathways across diverse geochemical environments while maintaining a core of functional stress response genes.  相似文献   

18.
The fates of Pseudomonas fluorescens R2fR and its mutant derivative RIWE8, which contains a lacZ reporter gene responsive to wheat root exudate, were compared in a field microplot. Inoculant survival, root colonization, translocation, resistance to stress factors, and reporter gene activity were assessed in bulk and wheat rhizosphere soils. Populations of both strains declined gradually in bulk and wheat rhizosphere soils and on the wheat rhizoplane as determined by specific CFU and immunofluorescence (IF). In samples from both bulk soil and wheat rhizosphere, IF cell counts were up to 3 orders of magnitude greater than the corresponding numbers of CFU after 120 days, indicating the presence of nonculturable inoculant cells. Estimates of RIWE8-specific target DNA molecule numbers in bulk soil samples 3 and 120 days after inoculation by most-probable-number PCR coincided with the corresponding CFU values. Transport of both strains to deeper soil layers was observed by 3 days after introduction into the microplot. Both strains colonized wheat roots similarly, and cells were seen scattered on the surface of 1-month-old wheat seedling roots by immunogold labelling-scanning electron microscopy. On average, reporter gene activity was significantly higher in wheat rhizosphere soil containing RIWE8 cells than in bulk soil or in soils containing R2fR cells. For both strains, resistance to the four stress factors ethanol, high temperature, high osmotic tension, and oxidative stress increased progressively with residence in soil. Cells from the rhizosphere of 11-day-old seedlings showed similar levels of resistance to osmotic and oxidative stresses and enhanced resistance to ethanol and heat as compared to cells from bulk soil. By 37 days, populations of R2fR and RIWE8 in the rhizosphere were significantly more sensitive to osmotic stress than were populations in bulk soil, whereas differences in response to the other stress factors were less evident. Hence, except for the induction of reporter gene expression in strain RIWE8 in the wheat rhizosphere, the data indicated that there were no great differences in the ecological properties in soil between the lacZ-modified and parental strains.  相似文献   

19.
Plasmid pHF360 was constructed from cloned rRNA genes (rDNA) of Pseudomonas aeruginosa and used as hybridization probe for the Pseudomonas fluorescens group. The probe was tested by dot and in situ colony hybridizations to chromosomal DNAs from a wide variety of organisms. pHF360 DNA hybridized exclusively to chromosomal DNAs from bacteria representing the P. fluorescens group and separated them clearly from all other bacteria tested in the present study. Determination of the nucleotide sequence of the cloned DNA showed that it is a fragment from a 23S rRNA gene of P. aeruginosa. It was compared with the published 23S RNA sequence from Escherichia coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号