首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29033篇
  免费   2765篇
  国内免费   12篇
  2022年   221篇
  2021年   498篇
  2020年   278篇
  2019年   383篇
  2018年   414篇
  2017年   414篇
  2016年   682篇
  2015年   1133篇
  2014年   1262篇
  2013年   1621篇
  2012年   2016篇
  2011年   2075篇
  2010年   1264篇
  2009年   1155篇
  2008年   1704篇
  2007年   1629篇
  2006年   1448篇
  2005年   1511篇
  2004年   1486篇
  2003年   1333篇
  2002年   1276篇
  2001年   345篇
  2000年   282篇
  1999年   365篇
  1998年   364篇
  1997年   267篇
  1996年   220篇
  1995年   186篇
  1994年   186篇
  1993年   174篇
  1992年   254篇
  1991年   218篇
  1990年   204篇
  1989年   206篇
  1988年   171篇
  1987年   189篇
  1986年   171篇
  1985年   194篇
  1984年   212篇
  1983年   177篇
  1982年   190篇
  1981年   214篇
  1980年   223篇
  1979年   182篇
  1978年   171篇
  1977年   176篇
  1976年   149篇
  1975年   127篇
  1974年   154篇
  1973年   112篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Based on its proven anabolic effects on bone in osteoporosis patients, recombinant parathyroid hormone (PTH1-34) has been evaluated as a potential therapy for skeletal repair. In animals, the effect of PTH1-34 has been investigated in various skeletal repair models such as fractures, allografting, spinal arthrodesis and distraction osteogenesis. These studies have demonstrated that intermittent PTH1-34 treatment enhances and accelerates the skeletal repair process via a number of mechanisms, which include effects on mesenchymal stem cells, angiogenesis, chondrogenesis, bone formation and resorption. Furthermore, PTH1-34 has been shown to enhance bone repair in challenged animal models of aging, inflammatory arthritis and glucocorticoid-induced bone loss. This pre-clinical success has led to off-label clinical use and a number of case reports documenting PTH1-34 treatment of delayed-unions and non-unions have been published. Although a recently completed phase 2 clinical trial of PTH1-34 treatment of patients with radius fracture has failed to achieve its primary outcome, largely because of effective healing in the placebo group, several secondary outcomes are statistically significant, highlighting important issues concerning the appropriate patient population for PTH1-34 therapy in skeletal repair. Here, we review our current knowledge of the effects of PTH1-34 therapy for bone healing, enumerate several critical unresolved issues (e.g., appropriate dosing regimen and indications) and discuss the long-term potential of this drug as an adjuvant for endogenous tissue engineering.  相似文献   
2.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   
3.
4.
5.
6.
7.
Glucoamylase is a starch-hydrolyzing enzyme with a glycoprotein structure, used industrially for the conversion of starch to glucose, citric acid, corn syrups, and high-fructose sweeteners. This enzyme possesses an unusual type of structure in which many carbohydrate side chains are linked O-glycosidically to serine and threonine residues of the polypeptide chain. The carbohydrate side chains may be single monosaccharide residues or oligosaccharides of mannose, glucose, galactose, and in some cases N-acetylglucosamine. New data from experiments on the CNBr fragmentation of glucoamylase followed by chemical and immunological characterization of the fragments show that the carbohydrate side chains are distributed randomly along the polypeptide chain. Such a structure is appropriately termed a random model reprensentation for the glucoamylase molecule.  相似文献   
8.
The murine macrophage inflammatory proteins-1 alpha (MIP-1 alpha) and MIP-1 beta are distinct but closely related cytokines. Partially purified mixtures of the two proteins affect neutrophil function and cause local inflammation and fever. The particular properties of MIP-1 alpha have not been well studied, although it has been identified as being identical to an inhibitor of haemopoietic stem cell growth. We have expressed MIP-1 alpha in yeast cells and purified it to sequence homogeneity. Structural analysis of this biologically active material by circular dichroism and fluorescence spectroscopy confirms that MIP-1 alpha has a very similar secondary and tertiary structure to platelet factor 4 and interleukin 8 with which it shares limited sequence homology. The in-vitro stem cell inhibitory properties have been confirmed using a range of murine progenitor cells including purified bone marrow progenitor cells (FACS-1), the FDCP-mix A4 cell line, and spleen colony forming unit (CFU-S) populations. Plateau levels of inhibition of stem cell growth were achieved using concentrations of 0.15 micrograms/ml MIP-1 alpha. We have also demonstrated that MIP-1 alpha is active in vivo: 5 micrograms of MIP-1 alpha per mouse given as a bolus injection, protects stem cells from subsequent in-vitro killing by tritiated thymidine. MIP-1 alpha was also shown to enhance the proliferation of more committed progenitor granulocyte macrophage-colony forming cells (GM-CFC) in response to granulocyte macrophage-colony stimulating factor (GM-CSF).  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号