首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9605篇
  免费   779篇
  国内免费   5篇
  10389篇
  2023年   32篇
  2022年   83篇
  2021年   152篇
  2020年   92篇
  2019年   123篇
  2018年   143篇
  2017年   159篇
  2016年   228篇
  2015年   389篇
  2014年   524篇
  2013年   593篇
  2012年   759篇
  2011年   696篇
  2010年   443篇
  2009年   411篇
  2008年   493篇
  2007年   563篇
  2006年   494篇
  2005年   483篇
  2004年   445篇
  2003年   422篇
  2002年   398篇
  2001年   129篇
  2000年   127篇
  1999年   120篇
  1998年   124篇
  1997年   106篇
  1996年   102篇
  1995年   83篇
  1994年   83篇
  1993年   86篇
  1992年   106篇
  1991年   72篇
  1990年   82篇
  1989年   75篇
  1988年   69篇
  1987年   71篇
  1986年   67篇
  1985年   62篇
  1984年   73篇
  1983年   48篇
  1982年   45篇
  1981年   61篇
  1980年   34篇
  1979年   51篇
  1978年   39篇
  1977年   34篇
  1976年   41篇
  1975年   34篇
  1974年   53篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
For decades, the bio-duck sound has been recorded in the Southern Ocean, but the animal producing it has remained a mystery. Heard mainly during austral winter in the Southern Ocean, this ubiquitous sound has been recorded in Antarctic waters and contemporaneously off the Australian west coast. Here, we present conclusive evidence that the bio-duck sound is produced by Antarctic minke whales (Balaenoptera bonaerensis). We analysed data from multi-sensor acoustic recording tags that included intense bio-duck sounds as well as singular downsweeps that have previously been attributed to this species. This finding allows the interpretation of a wealth of long-term acoustic recordings for this previously acoustically concealed species, which will improve our understanding of the distribution, abundance and behaviour of Antarctic minke whales. This is critical information for a species that inhabits a difficult to access sea-ice environment that is changing rapidly in some regions and has been the subject of contentious lethal sampling efforts and ongoing international legal action.  相似文献   
3.
Nutrition plays a key role in many aspects of health and dietary imbalances are major determinants of chronic diseases including cardiovascular disease, obesity, diabetes and cancer. Adequate nutrition is particularly essential during critical periods in early life (both pre- and postnatal). In this regard, there is extensive epidemiologic and experimental data showing that early sub-optimal nutrition can have health consequences several decades later.  相似文献   
4.
Summary Leaf chemistry of a willow clone (Salix aquatica Smith) differed significantly when grown at constant relative growth rates depending upon the relative availability of nutrients and light. Concentration of amino acids and nitrate were high in plants grown with a relative surplus of nutrients. Concentrations of starch, tannin, and lignin, on the other hand, were high in plants grown with a relative surplus of carbon. Photosynthetic rates, expressed per unit leaf area, were similar when plants were grown under high light conditions, regardless of nutrient availability. Dark respiration was much higher in plants supplied with abundant nutrients than in those with a more limited supply, reflecting differences in nitrogen concentration of the tissue. The experimental approach allows plants to be grown to a standard size with differing, but highly uniform chemistry. Plants grown in such a manner may provide good experimental material to evaluate interactions between herbivores or pathogens and their hosts.  相似文献   
5.
Elucidation of the pathogenesis in respiratory chain diseases is of great importance for developing specific treatments. The limitations inherent to the use of patient material make studies of human tissues often difficult and the mouse has therefore emerged as a suitable model organism for studies of respiratory chain diseases. In this review, we present an overview of the field and discuss in depth a few examples of animal models reproducing pathology of human disease with primary and secondary respiratory chain involvement.  相似文献   
6.
7.
The aim of the study was to investigate the possibility of a seasonal variation in reactivity to apples in 27 birch pollen allergic patients. Before and during the birch pollen season 1998, the patients were subjected to double-blind, placebo-controlled food challenges (DBPCFCs) with grated fresh Golden Delicious apple followed by an open food challenge with whole fresh apple. The clinical reactions elicited during the challenges were evaluated both by the patients and the investigators. Moreover, the skin reactivity and the in vitro reactivity to apple were evaluated by skin prick test (SPT), leukocyte histamine release (HR), measurement of specific IgE, and immunoblotting experiments. The sensitivity of the DBPCFC, when compared with the result of the open challenge, was 0.74 (14/19) before the season and 0.80 (16/20) during the season. None of the patients reacted to the blinded challenge without a subsequent reaction to the open challenge. One placebo reaction was registered both before and in season, but not in the same patient. The patient scores of the first positive challenges, and the maximal scores of each combined blinded and open challenge session, were significantly increased during the pollen season (P<0.05). The scores of the open challenge were significantly higher than the scores of the DBPCFC both before the season and during the in-season challenges (P<0.05). Specific IgE against Golden Delicious increased during season (P<0.05), while neither SPT, HR, nor immunoblotting experiments could confirm an increase in reactivity. In conclusion, the results of the oral challenge tests indicated an increase in clinical reactivity to apples during the birch pollen season in birch pollen allergic individuals.  相似文献   
8.
9.
10.
A large bioreactor is heterogeneous with respect to concentration gradients of substrates fed to the reactor such as oxygen and growth limiting carbon source. Gradient formation will highly depend on the fluid dynamics and mass transfer capacity of the reactor, especially in the area in which the substrate is added. In this study, some production-scale (12 m3 bioreactor) conditions of a recombinant Escherichia coli process were imitated on a laboratory scale. From the large-scale cultivations, it was shown that locally high concentration of the limiting substrate fed to the process, in this case glucose, existed at the level of the feedpoint. The large-scale process was scaled down from: (i) mixing time experiments performed in the large-scale bioreactor in order to identify and describe the oscillating environment and (ii) identification of two distinct glucose concentration zones in the reactor. An important parameter obtained from mixing time experiments was the residence time in the feed zone of about 10 seconds. The size of the feed zone was estimated to 10%. Based on these observations the scale-down reactor with two compartments was designed. It was composed of one stirred tank reactor and an aerated plug flow reactor, in which the effect of oscillating glucose concentration on biomass yield and acetate formation was studied. Results from these experiments indicated that the lower biomass yield and higher acetate formation obtained on a large scale compared to homogeneous small-scale cultivations were not directly caused by the cell response to the glucose oscillation. This was concluded since no acetate was accumulated during scale-down experiments. An explanation for the differences in results between the two reactor scales may be a secondary effect of high glucose concentration resulting in an increased glucose metabolism causing an oxygen consumption rate locally exceeding the transfer rate. The results from pulse response experiments and glucose concentration measurements, at different locations in the reactor, showed a great consistency for the two feeding/pulse positions used in the large-scale bioreactor. Furthermore, measured periodicity from mixing data agrees well with expected circulation times for each impeller volume. Conclusions are drawn concerning the design of the scale-down reactor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号