首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3664篇
  免费   362篇
  2023年   10篇
  2022年   33篇
  2021年   56篇
  2020年   31篇
  2019年   51篇
  2018年   71篇
  2017年   56篇
  2016年   107篇
  2015年   174篇
  2014年   187篇
  2013年   211篇
  2012年   282篇
  2011年   270篇
  2010年   164篇
  2009年   149篇
  2008年   215篇
  2007年   209篇
  2006年   209篇
  2005年   180篇
  2004年   198篇
  2003年   147篇
  2002年   180篇
  2001年   50篇
  2000年   34篇
  1999年   52篇
  1998年   54篇
  1997年   38篇
  1996年   37篇
  1995年   36篇
  1994年   25篇
  1993年   25篇
  1992年   34篇
  1991年   38篇
  1990年   30篇
  1989年   24篇
  1988年   27篇
  1987年   30篇
  1986年   20篇
  1985年   32篇
  1984年   21篇
  1983年   20篇
  1982年   12篇
  1981年   24篇
  1980年   21篇
  1979年   34篇
  1978年   20篇
  1977年   12篇
  1974年   11篇
  1973年   12篇
  1971年   10篇
排序方式: 共有4026条查询结果,搜索用时 15 毫秒
1.
For decades, the bio-duck sound has been recorded in the Southern Ocean, but the animal producing it has remained a mystery. Heard mainly during austral winter in the Southern Ocean, this ubiquitous sound has been recorded in Antarctic waters and contemporaneously off the Australian west coast. Here, we present conclusive evidence that the bio-duck sound is produced by Antarctic minke whales (Balaenoptera bonaerensis). We analysed data from multi-sensor acoustic recording tags that included intense bio-duck sounds as well as singular downsweeps that have previously been attributed to this species. This finding allows the interpretation of a wealth of long-term acoustic recordings for this previously acoustically concealed species, which will improve our understanding of the distribution, abundance and behaviour of Antarctic minke whales. This is critical information for a species that inhabits a difficult to access sea-ice environment that is changing rapidly in some regions and has been the subject of contentious lethal sampling efforts and ongoing international legal action.  相似文献   
2.
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.  相似文献   
3.
Molecular techniques provide powerful tools for studying the geographic structure of hybrid zones and the dynamics of gene exchange between incipient species. We examined allozyme variation at five loci (PGM, GPI, MDH-1, MDH-2, and LDH) for 27 populations of Palaemonetes kadiakensis from the central, coastal, and eastern regions of Texas. Central Texas populations of P. kadiakensis exhibited highly significant linkage disequilibrium and departures from Hardy-Weinberg genotype proportions. In populations with linkage disequilibrium, allelic differences at GPI defined two types of P. kadiakensis, designated A and B. Both types existed in central Texas with little or no evidence of interbreeding, whereas the populations from all other localities showed complete introgression of type B alleles into the type A gene pool. We also examined ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) variation in a subset of populations, chosen to cover a range of geographic locations and levels of linkage disequilibrium. Two groups of mtDNA haplotypes and two restriction fragment patterns for the rDNA corresponded to allozyme type A and B individuals in populations exhibiting linkage disequilibrium. In populations with ongoing hybridization, all hybrid animals (N= 15) exhibited type A mtDNA. Exhibition of type A mtDNA indicated that type A females had mated successfully with type B males, but type B females had not mated successfully with type A males. Genotype distributions suggest reduced reproduction by hybrid offspring in central Texas populations. These patterns are consistent with a mosaic model of hybrid zone dynamics.  相似文献   
4.
The gene coding for the M r 26000 chain of the human CD3 (T3) antigen/T-cell antigen receptor complex was mapped to chromosome band 11q23 by using a cDNA clone (pJ6T3 -2), by in situ hybridization to metaphase chromosomes and by Southern blot analysis of a panel of human-rodent somatic cell hybrids. The mouse homolog, here termed Cdg-3, was mapped to chromosome 9 using the mouse cDNA clone pB10.AT3 -1 and a panel of mouse-hamster somatic cell hybrids. Similar locations for the CD3 genes have been described previously. Thus, the corporate results indicate that the CD3 and genes have remained together since they duplicated about 200 million years ago.  相似文献   
5.
A system was established for introducing cloned genes into white clover (Trifolium repens L.). A high regeneration white clover genotype was transformed with binary Agrobacterium vectors containing a chimaeric gene which confers kanamycin resistance. Transformed kanamycin resistant callus was obtained by culturing Agrobacterium inoculated stolon internode segments on selective medium. The kanamycin resistance phenotype was stable in cells and in regenerated shoots. Transformation was confirmed by the expression of an unselected gene, nopaline synthase in selected cells and transgenic shoots and by the detection of neomycin phosphotransferase II enzymatic activity in kanamycin resistant cells. Integration of vector DNA sequences into plant DNA was demonstrated by Southern blot hybridisation.  相似文献   
6.
Summary The relationship between alkaline phosphatase and environmental salinity was examined in the rainbow trout and the migratory rainbow (steelhead),Salmo gairdneri. The enzyme activity in tissues involved in osmoregulation was strongly correlated with the adaptation salinity and thus to the degree of salt and fluid transport in those tissues. After transfer from freshwater to seawater, the specific activity of the enzyme increased over 260% in the intestine, decreased by 50% in kidney, and was unchanged in the liver, an organ not directly involved in osmoregulation. The sea-run steelhead trout response was similar to the nonmigratory rainbow; although, the pre-migratory transformation (smoltification) had no effect on enzyme activity. Amino acid inhibitors of alkaline phosphatase significantly reduced fluid absorption in the isolated intestine of rainbow trout, reaffirming the relationship between the enzyme and fluid movement. Electrophoretic identification of trout alkaline phosphatase isozymes, clearly distinguishes the enzyme from different tissue origins. However, from the analysis of intestinal electrophoretic patterns, osmoregulatory adjustments are not associated with the induction of new alkaline phosphatase isozymes, or in the large scale preferential stimulation of one of the two existing intestinal isozymes over the other.  相似文献   
7.
The nuclear lamina of vertebrates is composed of several major polypeptides that range in mol. wt from 60 to 80 kd. In mammals, the three major lamin proteins are designated A, B and C. Two major lamins have been described in Xenopus somatic tissues; two other lamins are expressed primarily in germ cells. We have analysed a cDNA clone encoding a Xenopus lamin that is highly homologous to human lamins A and C. The predicted protein has the carboxy-terminal domain characteristic of human lamin A and is thus a lamin A homologue. Surprisingly, the lamin encoded by the cDNA clone is not one of the known Xenopus lamins. The encoded protein is distinct in size from the oocyte lamin LIII and the two somatic lamins LI and LII. Monoclonal antibodies specific for LII, LIII and LIV (the lamin of male germ cells) do not recognize the protein encoded by the cDNA clone; conversely, a polyclonal antibody against the encoded protein does not recognize any of the known Xenopus lamins. This lamin is expressed late in embryonic development, and is present in all adult somatic cells examined, except erythrocytes. Thus frogs and mammals are similar in having three major somatic lamins that fall into distinct structural classes.  相似文献   
8.
Posttranslational modification and microtubule stability   总被引:16,自引:12,他引:4       下载免费PDF全文
We have probed the relationship between tubulin posttranslational modification and microtubule stability, using a variation of the antibody-blocking technique. In human retinoblastoma cells we find that acetylated and detyrosinated microtubules represent congruent subsets of the cells' total microtubules. We also find that stable microtubules defined as those that had not undergone polymerization within 1 h after injection of biotin-tubulin were all posttranslationally modified; furthermore dynamic microtubules were all unmodified. We therefore conclude that in these cells the stable, acetylated, and detyrosinated microtubules represent the same subset of the cells' total network. Posttranslational modification, however, is not a prerequisite for microtubule stability and vice versa. Potorous tridactylis kidney cells have no detectable acetylated microtubules but do have a sizable subset of stable ones, and chick embryo fibroblast cells are extensively modified but have few stable microtubules. We conclude that different cell types can create specific microtubule subsets by modulating the relative rates of posttranslational modification and microtubule turnover.  相似文献   
9.
Local cerebral glucose utilization (LCGU) was measured, using the quantitative autoradiographic [14C]2-deoxy-D-glucose method, in 56 brain regions of 3-month-old, awake Fischer-344 rats, after intraperitoneal administration of sulpiride (SULP) 100 mg/kg. SULP, an "atypical" neuroleptic, is a selective antagonist of D2 dopamine receptors. LCGU was reduced in a few nondopaminergic regions at 1 h after drug administration. Thereafter, SULP progressively elevated LCGU in many other regions. At 3 h, LCGU was elevated in 23% of the regions examined, most of which are related to the CNS dopaminergic system (caudate-putamen, nucleus accumbens, olfactory tubercle, lateral habenula, median eminence, paraventricular hypothalamic nucleus). Increases of LCGU were observed also in the suprachiasmatic nucleus, lateral geniculate, and inferior olive. These effects of SULP on LCGU differ from the effects of the "typical" neuroleptic haloperidol, which produces widespread decreases in LCGU in the rat brain. Selective actions on different subpopulations of dopamine receptors may explain the different effects of the two neuroleptics on brain metabolism, which correspond to their different clinical and behavioral actions.  相似文献   
10.
Asynchronous and synchronized cultures of A549 and HTC cells were used to detect possible, cell cycle or cell density specific variations in the intracellular pools of dinucleoside tetraphosphates (Ap4X). No important variations of the nucleotide pools were observed during cell growth. When HTC cells were released from mitotic arrest, a decrease by a factor of N3 Ap4X and ATP levels was observed when the cells entered the G1 phase. This decrease is essentially due to cell doubling. When A549 cells were released from an arrest at the G1/S boundary, the nucleotide pool size increased slightly during the G2 phase just before mitosis. This result is in agreement with both earlier data from our laboratory and the observed decrease in Ap4X pool after release from mitotic-arrested HTC cells. These results suggest that the Ap4X and ATP pools are only subjected to very small variations during the cell cycle, essentially in the G2 phase and after mitosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号