首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2785篇
  免费   299篇
  国内免费   1篇
  2022年   22篇
  2021年   50篇
  2020年   28篇
  2019年   27篇
  2018年   31篇
  2017年   46篇
  2016年   52篇
  2015年   119篇
  2014年   138篇
  2013年   133篇
  2012年   168篇
  2011年   179篇
  2010年   133篇
  2009年   105篇
  2008年   159篇
  2007年   177篇
  2006年   168篇
  2005年   142篇
  2004年   111篇
  2003年   114篇
  2002年   100篇
  2001年   58篇
  2000年   33篇
  1999年   46篇
  1998年   41篇
  1997年   31篇
  1996年   31篇
  1995年   18篇
  1994年   20篇
  1993年   28篇
  1992年   36篇
  1991年   26篇
  1990年   31篇
  1989年   27篇
  1988年   39篇
  1987年   27篇
  1986年   27篇
  1985年   30篇
  1984年   26篇
  1983年   22篇
  1982年   22篇
  1981年   17篇
  1980年   13篇
  1979年   23篇
  1978年   12篇
  1977年   19篇
  1976年   14篇
  1974年   20篇
  1970年   10篇
  1968年   11篇
排序方式: 共有3085条查询结果,搜索用时 15 毫秒
1.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   
2.
3.
Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors'' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants'' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens.  相似文献   
4.
Almost all primates experience seasonal fluctuations in the availability of key food sources. However, the degree to which this fluctuation impacts foraging behavior varies considerably. Eastern chimpanzees (Pan troglodytes schweinfurthii) in Nyungwe National Park, Rwanda, live in a montane forest environment characterized by lower primary productivity and resource diversity than low‐elevation forests. Little is known about chimpanzee feeding ecology in montane forests, and research to date predominantly relies on indirect methods such as fecal analyses. This study is the first to use mostly observational data to examine how seasonal food availability impacts the feeding ecology of montane forest chimpanzees. We examine seasonal changes in chimpanzee diet and fallback foods (FBFs) using instantaneous scan samples and fecal analyses, supported by inspection of feeding remains. Chimpanzee fruit abundance peaked during the major dry season, with a consequent change in chimpanzee diet reflecting the abundance and diversity of key fruit species. Terrestrial herbaceous vegetation was consumed throughout the year and is defined as a “filler” FBF. In contrast to studies conducted in lower‐elevation chimpanzee sites, figs (especially Ficus lutea) were preferred resources, flowers were consumed at seasonally high rates and the proportion of non‐fig fruits in the diet were relatively low in the current study. These divergences likely result from the comparatively low environmental diversity and productivity in higher‐elevation environments.  相似文献   
5.
6.
7.
8.
9.
10.
Nutritional conditional mutants of Drosophila melanogaster   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号