首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6091篇
  免费   426篇
  国内免费   307篇
  6824篇
  2024年   13篇
  2023年   135篇
  2022年   135篇
  2021年   209篇
  2020年   206篇
  2019年   205篇
  2018年   176篇
  2017年   175篇
  2016年   165篇
  2015年   209篇
  2014年   305篇
  2013年   406篇
  2012年   281篇
  2011年   264篇
  2010年   218篇
  2009年   254篇
  2008年   264篇
  2007年   314篇
  2006年   260篇
  2005年   252篇
  2004年   266篇
  2003年   211篇
  2002年   197篇
  2001年   184篇
  2000年   138篇
  1999年   136篇
  1998年   119篇
  1997年   106篇
  1996年   84篇
  1995年   121篇
  1994年   89篇
  1993年   68篇
  1992年   63篇
  1991年   47篇
  1990年   52篇
  1989年   60篇
  1988年   43篇
  1987年   40篇
  1986年   36篇
  1985年   48篇
  1984年   34篇
  1983年   31篇
  1982年   33篇
  1981年   38篇
  1980年   25篇
  1979年   25篇
  1978年   19篇
  1977年   13篇
  1975年   9篇
  1972年   9篇
排序方式: 共有6824条查询结果,搜索用时 15 毫秒
991.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   
992.
Aim Bergmann's rule, the tendency for body size to be positively correlated with latitude, is widely accepted but the mechanisms behind the patterns are still debated. Bergmann's originally conceived mechanism was based on heat conservation; other proposed mechanisms invoke phylogeny, migration distance and resource seasonality. With the goal of examining these mechanisms, we quantified morphological variation across the breeding range of a Neotropical migratory songbird, the cerulean warbler (Dendroica cerulea). Location Deciduous forests of eastern North America. Methods We sampled nine cerulean warbler populations, spanning the species’ breeding range. We captured 156 males using targeted playback and model presentation, and included 127 adult males in our analyses of morphological variation. We used an information‐theoretical approach to identify climatic variables associated with geographical variation in body size. Results Cerulean warbler body size adheres to Bergmann's rule: individuals in northern populations are larger than those in southern populations. Variation in body size is best explained by variation in dry and wet‐bulb temperature and actual evapotranspiration. Main conclusions Adherence to Bergmann's rule by the cerulean warbler appears to be linked to thermodynamics (heat conservation in the north, evaporative cooling in the south) and resource seasonality. Multiple selection pressures can interact to generate a single axis of morphological geographical variation, and even subtle fluctuations in climatic variables can exert significant selection pressures. We suggest that the influence of selection pressures on migrants might be enhanced by migratory connectivity, providing further support for the important role played by this phenomenon in the ecology, evolution and population dynamics of migratory songbirds.  相似文献   
993.
Cell-number density and cell-volume distribution data were obtained from cultures of Chlorella fusca var. vacuolata Shihira & Krauss growing under both continuous and periodic illumination. Mean, median and modal cell-volumes were calculated from the cell-volume distributions and a high correlation shown between mean and median values, whilst mean and modal values did not correlate well. It was concluded that where the computation necessary for deriving mean cell-volumes was not practicable, the median cell-volume was the next most useful statistic.

Synchrony indices of discontinuously illuminated cultures gave similar values when based on change in cell-number and change in mean cell-volume. Cultures under continuous illumination showed synchronous divisions at the beginning of growth. These divisions gave high values of a synchrony index based on change in cell-number, but low values of an index based on change in mean cell-volume. It was concluded that mean cell-volume data are more sensitive to the occurrence of unbalanced growth than analysis of cell-number data.  相似文献   
994.
The stability of ecological communities depends strongly on quantitative characteristics of population interactions (type‐II vs. type‐III functional responses) and the distribution of body masses across species. Until now, these two aspects have almost exclusively been treated separately leaving a substantial gap in our general understanding of food webs. We analysed a large data set of arthropod feeding rates and found that all functional‐response parameters depend on the body masses of predator and prey. Thus, we propose generalised functional responses which predict gradual shifts from type‐II predation of small predators on equally sized prey to type‐III functional‐responses of large predators on small prey. Models including these generalised functional responses predict population dynamics and persistence only depending on predator and prey body masses, and we show that these predictions are strongly supported by empirical data on forest soil food webs. These results help unravelling systematic relationships between quantitative population interactions and large‐scale community patterns.  相似文献   
995.
996.
Fresh and dry body weights (FW, DW) were greater for adult southern green stink bug,Nezara viridula (L.) than for the brown stink bug,Euschistus heros F. throughout the year in southern Brazil. FemalesN. viridula significantly increased FW and DW in late summer-early autumn, and during mid-spring; femaleE. heros did not show the same rates of increase in FW and DW. FemaleN. viridula were heavier than males, particularly during summer; however, female and maleE. heros were generally similar in weight.E. heros contained significantly greater amounts of lipid thanN. viridula, during mid-autumn to early-spring (April–September). Survivorship (%) and total longevity ofE. heros adults provided water only was greater (34.6–24.6 days, for females and males) than that forN. viridula (14.8–13.0 days); without water and food, longevity was drastically reduced (<7 days) for both species.  相似文献   
997.
青年昼间发汗调定点正常值探讨   总被引:1,自引:0,他引:1  
以加热腿足诱发前臂屈侧初始发汗的口腔温度阈值,作为发汗调定点的参考值(ToSSP),检测健康青年93人夏冬两季昼间ToSSP134次。结果表明,季节、性别、民族、于室温24℃左右变异达30%的相对湿度对ToSSP均无显著影响。提示ToSSP为一间接反映体温调定点较发汗率为稳定的指标。ToSSP的频数分布属于正态,均值为37.34℃,95%正常值范围为36.97~37.71℃。经于本工作前,后年份检测的两组结果以及与正常体温夜间最低时相组和发热患者组的ToSSP相验证,证明此正常值范围可靠。检测ToSSP的潜伏期夏季均值为19′57″冬季为18′22″(P<0.05)。检测ToSSP时口温变化分别与皮肤温、心率变化紧密相关,因而心率,皮肤温可作为监测ToSSP的辅佐指标。  相似文献   
998.
袁秀堂  杨红生  王丽丽  周毅  张涛  刘鹰 《生态学报》2007,27(8):3155-3161
夏眠是刺参最重要的生理特征;水温升高是其夏眠的主要诱发因子,而夏眠的临界温度与刺参体重密切相关。为揭示刺参夏眠对其能量利用对策的影响,测定了2种体重规格(134.0±13.5)g和(73.6±2.2)g刺参在10、15、20、25℃和30℃5个温度梯度下的能量收支。结果表明,温度和体重及其交互作用对刺参能量的摄入均有显著影响;而温度是影响其摄食能分配的主要因素。研究发现,刺参在非夏眠期、夏眠临界期和完全夏眠期的能量利用对策有所不同:在非夏眠期,刺参摄食能支出的最大组分是粪便能,占摄食能的比例超过50%,其次为呼吸耗能,占19.8%~39.4%,而生长能和排泄能占的比例较小,分别为5.7%~10.7%和2.9%~3.7%;在夏眠临界温度下,呼吸和排泄耗能占摄食能的比例均显著增大(分别为88.3%和13.6%),而生长能所占比例降为负值(-55.3%),刺参表现为负生长;而在夏眠期,刺参的摄食能和排粪能为零,为维持其基本生理活动,不得不动用以往贮存于体内的能量,消耗于呼吸和排泄等生理过程,供维持生命之用。总之,从能量生物学的角度看,夏眠的主要生态学意义在于刺参长时间处于相对高温环境,进而导致摄食受阻条件下的一种能量节约方式。  相似文献   
999.
Cryopreservation of embryonic stem (ES) cells is essential to establish them as a resource for regenerative therapy. We evaluated survival adhesion rate, cell structure, gene expression, and multipotency of frozen and thawed embryoid bodies (EBs) derived from mouse ES cells. EBs were cryopreserved using the BICELL and the Program Freezer. After one week the EBs were thawed and cultured. EBs prepared in the Program Freezer had the highest survival adhesion (Program Freezer; 55-69%, BICELL; 30-38%). Though many cells in the thawed EBs were damaged, some were not, especially those prepared in the Program Freezer. RT-PCR analysis showed that genes characteristic of the three embryonic germ layers were expressed in thawed EBs cultured for one week. EBs transplanted into mice formed teratomas consisting of cells derived from the three germ layers. In conclusion, EBs frozen in the Program Freezer had higher survival adhesion rates compared to the BICELL and formed differentiated cells characteristic of the three embryonic germ layers.  相似文献   
1000.
The relationship between body mass (M) and size class abundance (N) depicts patterns of community structure and energy flow through food webs. While the general assumption is that M and N scale linearly (on log–log axes), nonlinearity is regularly observed in natural systems, and is theorized to be driven by nonlinear scaling of trophic level (TL) with M resulting in the rapid transfer of energy to consumers in certain size classes. We tested this hypothesis with data from 31 stream food webs. We predicted that allochthonous subsidies higher in the web results in nonlinear M–TL relationships and systematic abundance peaks in macroinvertebrate and fish size classes (latter containing salmonids), that exploit terrestrial plant material and terrestrial invertebrates, respectively. Indeed, both M–N and M–TL significantly deviated from linear relationships and the observed curvature in M–TL scaling was inversely related to that observed in M–N relationships. Systemic peaks in M–N, and troughs in M–TL occurred in size classes dominated by generalist invertebrates, and brown trout. Our study reveals how allochthonous resources entering high in the web systematically shape community size structure and demonstrates the relevance of a generalized metabolic scaling model for understanding patterns of energy transfer in energetically ‘open’ food webs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号