Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests. 相似文献
Mycotoxins are fungal metabolite which may in some cases exhibit a high health hazard potential. Mycotoxins can show carcinogenic, mutagenic, toxic, teratogenic or immunotoxic effects. Mycotoxin exposure in the workplace may occur through inhalation and skin contact,e.g. during occupational handling of organic matter such as livestock feed, food products, or waste. Various studies suggest that both acute and chronic effects can occur, depending at least on the exposure level. The magnitude of the potential health risks associated with a respiratory or dermal intake of mycotoxins has largely remained unclear to date. However, according to the directive 2000/54/EC on biological agents and the corresponding German Biological Agents Ordinance, employers are also required to consider the potential hazards posed by toxic effects of biological agents when assessing workplace risks. The aim of this article, therefore, is to present some basis information that should facilitate an evaluation of the significance of mycotoxins in the context of assessing workplace risks. It also provides suggestions for occupational health and safety measures. 相似文献
Quince (Cydonia oblonga Mill.), pear (Pyrus communis L.) and olive (Olea europaea L.) genotypes were evaluated for their tolerance to iron deficiency stress by growing young plants in three types of aerated nutrient solutions: (1) with iron, (2) without iron or (3) low in iron and with 10 mM bicarbonate. Plants were obtained either from rooted softwood cuttings or from germination of seeds. The degree of tolerance was evaluated with several indices: (1) the chlorophyll content, (2) the root Fe3+ reducing capacity and (3) the whole plant relative growth. Fifteen hours before Fe3+ reducing capacity determination, iron was applied to the roots of plants with iron-stress, since this method resulted in increasing the reductase activity. All quince and pear genotypes increased the root Fe3+ reducing capacity when grown in the treatments for iron-stress, in relation to control plants of the same genotypes. In olive cultivars, the Fe3+ reducing capacity was lower in the iron-stress treatments than in the control one. Studying the relationship between relative growth and chlorophyll content for each genotype under iron-stress, in relation to both indices in control plants, a classification of species and genotypes was established. According to that, most olive cultivars and some pear rootstocks and cultivars appear more iron-efficient than quince rootstocks. Our study shows that in some woody species, determining root Fe3+ reducing capacity is not the best method to establish tolerance to iron deficiency stress. 相似文献
Food intake was restricted to 75% of ad libitum levels in 37 male Psammomys obesus (Israeli Sand Rats) from the ages of 4 (weaning) to 10 weeks. Energy restriction reduced the mean body weight at 10 weeks by 29% compared with 44 ad libitum fed controls. Hyperglycemia was prevented completely in the food-restricted group, and mean blood glucose concentrations were significantly reduced (3.8 ± 0.2 vs. 5.5 ± 0.4 μmol/L; p<0.05) compared with control animals. Plasma insulin concentrations were also decreased significantly compared with ad libitum fed controls (105 ± 13 vs. 241 ± 29 mU/L;p<0.05). Although energy restriction prevented hyperglycemia from developing in 10-week-old P. obesus, 19% of the food restricted animals still developed hyperinsu-linemia. We concluded that hyperphagia between the ages of 4 to 10 weeks may be essential for the development of noninsulin-dependent diabetes mellitus in P. obesus, but that hyperinsulinemia may still occur in the absence of hyperphagia and hyperglycemia, suggesting a significant genetic influence on the development of hyperinsulinemia in this animal model. 相似文献
Growth hormone-releasing factor (GRF) is a hypothalamic peptide named for its ability to induce release of growth hormone from the anterior pituitary. GRF also acts as a neurotransmitter in the suprachiasmatic nucleus/medial preoptic area (SCN/MPOA) to stimulate food intake. The purpose of this series of experiments was to explore the nature of GRF-induced feeding, with a particular emphasis on macronutrient selectivity, and to examine the role of opiate activity in the paraventricular nucleus of the hypothalamus (PVN). Chow intake stimulated by GRF microinjection (1 pmol/0.5 μl) into the SCN/MPOA was blocked by injection of methyl-naltrexone (3 μg/0.5 μl) into the PVN. In animals habituated to macronutrient diets (Teklad, WI), GRF preferentially stimulated intake of protein at 2 and 4 h postinjection, whereas it had no effect on carbohydrate intake. Further, this effect was blocked by injection of naloxone (40 nmol/0.5 μl) into the PVN. Microinjection of morphine (0, 1, 10, and 17 μg/0.5 μl) into the PVN also specifically stimulated protein intake at 2 and 4 h postinjection. These results suggest that feeding derived from GRF actions in the SCN/MPOA is macronutrient selective, and is dependent on PVN opiate activity for expression. 相似文献
1. 1.In young pigs living at 35 or 10°C on a high or low energy intake, respiratory enzyme activities in longissimus dorsi muscle were greater both in the cold and on low intake. The elevated activities in the cold were unlikely to be related entirely to shivering since they were also found in muscle from the diaphragm.
2. 2.In a second study, pigs were kept close to thermal neutrality (26°C) on different levels of food intake and for different periods of time. For all animals, as body weight increased there was a decline in respiratory enzyme activity and the number of dark fibres in skeletal muscle. For those of the same weight, but different age and food intake, there was no difference in enzyme activity or number of dark fibres per unit area.
3. 3.At least part of the difference in respiratory enzyme activities related to energy intake must therefore be due to differences in body size. However, size is not the sole determinant of enzyme activity in skeletal muscle, since in animals of similar size those living at 10°C have greater enzyme activities than those at 35°C.
This paper presents information about the release of nitrogen and phosphorus from dying grass roots and the capture of phosphorus by other, living plants. We have paid particular attention to the part played by mycorrhizas in this phosphorus capture, and the possible importance of mycorrhizal links between dying and living roots.WhenLolium perenne plants were grown with ample nutrients and their roots then detached and buried in soil, about half the nitrogen and two-thirds of the phosphorus was lost in three weeks, but only one-fifth of the dry weight. The C:N and C:P ratios suggest that microbial growth in the roots would at first be C-limited but would become N- and P-limited within three weeks.Rapid transfer of32P can occur from dying roots to those of a living plant if the two root systems are intermingled. The amount transferred was substantially increased in two species-combinations that are known to form mycorrhizal links between their root systems. In contrast, in a species-combination where only the living (receiver) plant could become mycorrhizal no significant increase of32P transfer occurred. This evidence, although far from conclusive, suggests that mycorrhizal links between dying and living roots can contribute to nutrient cycling. This research indicates a major difference in nutrient cycling processes between perennial and annual crops. 相似文献
Copper absorption was measured at two levels of dietary zinc in six healthy young men who were confined to a metabolic unit
for a 75 d study of zinc utilization. A diet of conventional foods was fed, providing either 16.5 or 5.5 mg zinc and 1.3 mg
copper daily. Copper absorption was determined by feeding65Cu, a stable isotope of copper, once during the 16.5 mg Zn diet and near the beginning and end of the 5.5 mg Zn diet. Apparent
copper absorption averaged 48.1% when the 16.5 mg Zn diet was fed. This was significantly higher than the averages of 37.2
and 38.5% when the 5.5 mg Zn diet was fed. Absorption also differed significantly among subjects. Fecal copper did not differ
between diets or among subjects. All subjects were in positive copper balance at both levels of dietary zinc. These results
suggest that a dietary zinc intake slightly above the Recommended Dietary Allowance of 15 mg/d does not increase fecal copper
loss and does not interfere with copper absorption. 相似文献
The results of experiments on the efficiency of periphyton communities for nutrient removal from polluted streams in a continuous flow-through are given. The artifical stream (5 m × 0.7 m × 0.5 m) was made of wood, with silon (a kind of nylon) screens, as a substratum for periphyton growth. The elimination of nutrients was monitored by ammonium, nitrite, nitrate and orthophosphate analyses. In addition, the elimination of organics and the decrease in trophic state were determined. During two field experiments a marked elimination of nitrogen and phosphorus was demonstrated. The maximum efficiency of ammonium and orthophosphate removal was 80% and 70%, respectively. Organic removal reached 35% (C.O.D.Mn-Kubel) and 54% (B.O.D.5). Inorganic and organic nutrient elimination caused significant changes in periphyton community structure in the outflow portion of the through, evaluated by the saprobic index and the similarity coefficient. The experiments confirmed that periphyton communities are a useful means of nutrient removal from polluted streams. 相似文献