首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   22篇
  351篇
  2022年   3篇
  2021年   6篇
  2019年   3篇
  2018年   6篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   10篇
  2013年   9篇
  2012年   17篇
  2011年   9篇
  2010年   10篇
  2009年   7篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   12篇
  2002年   5篇
  2001年   13篇
  2000年   10篇
  1999年   15篇
  1997年   3篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   9篇
  1990年   13篇
  1989年   4篇
  1988年   4篇
  1987年   12篇
  1986年   3篇
  1985年   9篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1973年   7篇
  1972年   8篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
排序方式: 共有351条查询结果,搜索用时 0 毫秒
41.
42.
Acid proteinases with an optimum around pH 3 were demontrated in various tissues of 12 molluscan species. Enzymes strongly inhibited by pepstatin were predominant and the molecular weights of those from two species were in the region of 38,000–68,000, suggesting that they were cathepsin D-type proteinases.  相似文献   
43.
44.
45.
46.
The merozoite cap protein-1 (MCP-1) of Plasmodium falciparum follows the distribution of the moving Junction during invasion of erythrocytes. We have cloned the gene encoding this protein from a cDNA library using a monoclonal antibody. The protein lacks a signal sequence and has no predicted trans-membrane domains; none of the antisera reacts with the surfaces of intact merozoites, indicating that the cap distribution is submembranous. MCP-1 is divided into three domains. The N-terminal domain includes a 52-amino-acid region that is highly conserved in a large family of bacterial and eukaryotic proteins. Based on the known functions of two proteins of this family and the pattern of amino acid conservation, it is predicted that this domain may possess oxido-reductase activity, since the active cysteine residue of this domain is invariant in all proteins of the family. The other two domains of MCP-1 are not found in any other members of this protein family and may reflect the specific function of MCP-1 in invasion. The middle domain is negatively charged and enriched in glutamate; the C-terminal domain is positively charged and enriched in lysine. By virtue of its positive charge, the C-terminal domain resembles domains in some cytoskeleton-associated proteins and may mediate the interaction of MCP-1 with cytoskeleton in Plasmodium.  相似文献   
47.
Ubiquitin (Ub)-dependent endocytosis of membrane proteins requires precise molecular recognition of ubiquitinated cargo by Ub-binding proteins (UBPs). Many UBPs are often themselves monoubiquitinated, a mechanism referred to as coupled monoubiquitination, which prevents them from binding in trans to the ubiquitinated cargo. However, the spatiotemporal regulatory mechanism underlying the interaction of UBPs with the ubiquitinated cargo, via their Ub-binding domains (UBDs) remains unclear. Previously, we reported the interaction of Rabex-5, a UBP and guanine nucleotide exchange factor (GEF) for Rab5, with ubiquitinated neural cell adhesion molecule L1, via its motif interacting with Ub (MIU) domain. This interaction is critical for the internalization and sorting of the ubiquitinated L1 into endosomal/lysosomal compartments. The present study demonstrated that the interaction of Rabex-5 with Rab5 depends specifically on interaction of the MIU domain with the ubiquitinated L1 to drive its internalization. Notably, impaired GEF mutants and the Rabex-5E213A mutant increased the flexibility of the hinge region in the HB-VPS9 tandem domain, which significantly affected their interactions with the ubiquitinated L1. In addition, GEF mutants increased the catalytic efficiency, which resulted in a reduced interaction with the ubiquitinated L1. Furthermore, the coupled monoubiquitination status of Rabex-5 was found to be significantly associated with interaction of Rabex-5 and the ubiquitinated L1. Collectively, our study reveals a novel mechanism, wherein the GEF activity of Rabex-5 acts as an intramolecular switch orchestrating ubiquitinated cargo-binding activity and coupled monoubiquitination to permit the spatiotemporal dynamic exchange of the ubiquitinated cargos.  相似文献   
48.
49.
The terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault occurs worldwide, including in Japan and on the Antarctic continent. The terrestrial green alga Prasiola crispa (Lightf.) Kütz. is also distributed in Antarctica. These two species need to acclimate to the severe Antarctic climate including low ambient temperature and desiccation under strong light conditions. To clarify this acclimation process, the physiological characteristics of the photosynthetic systems of these two Antarctic terrestrial organisms were assessed. The relative rate of photosynthetic electron flow in N. commune collected in Japan and in Antarctica reached maxima at 900 and 1,100 μmol photons · m?2 · s?1, respectively. The difference seemed to reflect the presence of high amounts of UV‐absorbing substances within the Antarctic cyanobacterium. On the other hand, the optimal temperatures for photosynthesis at the two locations were 30°C–35°C and 20°C–25°C, respectively. This finding suggested a decreased photosynthetic thermotolerance in the Antarctic strain. P. crispa exhibited desiccation tolerance and dehydration‐induced quenching of PSII fluorescence. Re‐reduction of the photooxidized PSI reaction center, P700, was also inhibited at fully dry states. Photosynthetic electron flow in P. crispa reached a maximum at 20°C–25°C and at a light intensity of 700 μmol photons ? m?2 ? s?1. Interestingly, the osmolarity of P. crispa cells suggested that photosynthesis is performed using water absorbed in a liquid form rather than water absorbed from the air. Overall, these data suggest that these two species have acclimated to optimally photosynthesize under conditions of the highest light intensity and the highest temperature for their habitat in Antarctica.  相似文献   
50.
A Mucor pusillus mutant defective in asparagine-linked glycosylation was found in our stock cultures. This mutant, designated 1116, secreted aspartic proteinase (MPP) in a less-glycosylated form than that secreted by the wild-type strain. Analysis of enzyme susceptibility, lectin binding, and carbohydrate composition indicated that this mutant secreted three glycoforms of MPPs, one of which contained no carbohydrate; the other two had truncated asparagine-linked oligosaccharide chains such as Man0-1GlcNAc2. Further analysis using oligosaccharide processing inhibitors, such as castanospermine, 1-deoxynojirimycin and N-methyldeoxynojirimycin, suggested that MPPs in the mutant were glycosylated through a transfer of the truncated lipid-linked oligosaccharides, Man0-1GlcNAc2, to the MPP protein but not through an aberrant processing. In addition, genetic studies with forced primary heterokaryons indicated that the mutation in strain 1116 was recessive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号