首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7016篇
  免费   628篇
  国内免费   3篇
  7647篇
  2023年   37篇
  2022年   77篇
  2021年   163篇
  2020年   74篇
  2019年   126篇
  2018年   141篇
  2017年   117篇
  2016年   206篇
  2015年   349篇
  2014年   444篇
  2013年   547篇
  2012年   592篇
  2011年   588篇
  2010年   379篇
  2009年   348篇
  2008年   457篇
  2007年   446篇
  2006年   428篇
  2005年   400篇
  2004年   351篇
  2003年   325篇
  2002年   317篇
  2001年   52篇
  2000年   63篇
  1999年   78篇
  1998年   68篇
  1997年   46篇
  1996年   38篇
  1995年   40篇
  1994年   31篇
  1993年   31篇
  1992年   25篇
  1991年   18篇
  1990年   20篇
  1989年   20篇
  1988年   12篇
  1987年   23篇
  1986年   19篇
  1985年   12篇
  1983年   14篇
  1982年   5篇
  1980年   17篇
  1979年   8篇
  1978年   9篇
  1977年   15篇
  1976年   10篇
  1975年   11篇
  1974年   10篇
  1972年   5篇
  1969年   4篇
排序方式: 共有7647条查询结果,搜索用时 15 毫秒
181.
182.
PorH and PorA are two small peptides that, in complex, form a voltage-dependent ion channel in the outer membrane of Corynebacterium glutamicum. Specific post-translational modifications on PorA and PorH are required for the formation of a functional ion channel. The assignment of PorH proton NMR chemical shifts in DMSO, allowed identifying unambiguously the exact position of the PorH O-mycoloylation on Ser 56 side chain. This was further confirmed by site directed mutagenesis and mass spectrometry. Together with the previously published localization of PorA mycoloylation, this provides the complete primary structure characterization of this outer membrane porin.  相似文献   
183.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only 60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders.  相似文献   
184.
Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.  相似文献   
185.
We report an analysis of allele-specific expression (ASE) and parent-of-origin expression in adult mouse liver using next generation sequencing (RNA-Seq) of reciprocal crosses of heterozygous F1 mice from the parental strains C57BL/6J and DBA/2J. We found a 60% overlap between genes exhibiting ASE and putative cis-acting expression quantitative trait loci (cis-eQTL) identified in an intercross between the same strains. We discuss the various biological and technical factors that contribute to the differences. We also identify genes exhibiting parental imprinting and complex expression patterns. Our study demonstrates the importance of biological replicates to limit the number of false positives with RNA-Seq data.  相似文献   
186.
187.
Glycogen synthase (GS) catalyzes the transfer of glucose residues from UDP-glucose to a glycogen polymer chain, a critical step for glucose storage. Patients with type 2 diabetes normally exhibit low glycogen levels and decreased muscle glucose uptake is the major defect in whole body glucose disposal. Therefore, activating GS may provide a potential approach for the treatment of type 2 diabetes. In order to identify non-carboxylic acids GS activators, we designed and synthesized a series of 2-N-alkyl- and 2-N-aryl-indazolone derivatives and studied their activity in activating human GS.  相似文献   
188.
Microorganisms dwelling in sediments have a crucial role in biogeochemical cycles and are expected to have a strong influence on the cycle of arsenic, a metalloid responsible for severe water pollution and presenting major health risks for human populations. We present here a metagenomic study of the sediment from two harbours on the Mediterranean French coast, l'Estaque and St Mandrier. The first site is highly polluted with arsenic and heavy metals, while the arsenic concentration in the second site is below toxicity levels. The goal of this study was to elucidate the potential impact of the microbial community on the chemical parameters observed in complementary geochemical studies performed on the same sites. The metagenomic sequences, along with those from four publicly available metagenomes used as control data sets, were analysed with the RAMMCAP workflow. The resulting functional profiles were compared to determine the over‐represented Gene Ontology categories in the metagenomes of interest. Categories related to arsenic resistance and dissimilatory sulphate reduction were over‐represented in l'Estaque. More importantly, despite very similar profiles, the identification of specific sequence markers for sulphate‐reducing bacteria and sulphur‐oxidizing bacteria showed that sulphate reduction was significantly more associated with l'Estaque than with St Mandrier. We propose that biotic sulphate reduction, arsenate reduction and fermentation may together explain the higher mobility of arsenic observed in l'Estaque in previous physico‐chemical studies of this site. This study also demonstrates that it is possible to draw sound conclusions from comparing complex and similar unassembled metagenomes at the functional level, even with very low sequence coverage.  相似文献   
189.
Endosymbiotic bacteria are important drivers of insect evolutionary ecology, acting both as partners that contribute to host adaptation and as subtle parasites that manipulate host reproduction. Among them, the genus Arsenophonus is emerging as one of the most widespread lineages. Its biology is, however, entirely unknown in most cases, and it is therefore unclear how infections spread through insect populations. Here we examine the incidence and evolutionary history of Arsenophonus in aphid populations from 86 species, characterizing the processes that shape their diversity. We identify aphids as harbouring an important diversity of Arsenophonus strains. Present in 7% of the sampled species, incidence was especially high in the Aphis genus with more than 31% of the infected species. Phylogenetic investigations revealed that these Arseno‐phonus strains do not cluster within an aphid‐specific clade but rather exhibit distinct evolutionary origins showing that they undergo repeated horizontal transfers (HT) between distantly related host species. Their diversity pattern strongly suggests that ecological interactions, such as plant mediation and parasitism, are major drivers for Arsenophonus dispersal, dictating global incidence across insect communities. Notably, plants hosting aphids may be important ecological arenas for global exchange of Arsenophonus, serving as reservoirs for HT.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号