全文获取类型
收费全文 | 1779篇 |
免费 | 129篇 |
专业分类
1908篇 |
出版年
2023年 | 9篇 |
2022年 | 19篇 |
2021年 | 18篇 |
2020年 | 24篇 |
2019年 | 26篇 |
2018年 | 29篇 |
2017年 | 16篇 |
2016年 | 55篇 |
2015年 | 76篇 |
2014年 | 75篇 |
2013年 | 130篇 |
2012年 | 134篇 |
2011年 | 92篇 |
2010年 | 69篇 |
2009年 | 52篇 |
2008年 | 113篇 |
2007年 | 93篇 |
2006年 | 97篇 |
2005年 | 79篇 |
2004年 | 79篇 |
2003年 | 86篇 |
2002年 | 77篇 |
2001年 | 23篇 |
2000年 | 29篇 |
1999年 | 21篇 |
1998年 | 25篇 |
1997年 | 25篇 |
1996年 | 19篇 |
1995年 | 11篇 |
1994年 | 10篇 |
1993年 | 14篇 |
1992年 | 21篇 |
1991年 | 13篇 |
1990年 | 13篇 |
1989年 | 8篇 |
1988年 | 8篇 |
1986年 | 10篇 |
1985年 | 7篇 |
1982年 | 12篇 |
1981年 | 10篇 |
1980年 | 11篇 |
1979年 | 12篇 |
1978年 | 9篇 |
1977年 | 9篇 |
1975年 | 6篇 |
1974年 | 12篇 |
1973年 | 15篇 |
1971年 | 9篇 |
1966年 | 6篇 |
1965年 | 7篇 |
排序方式: 共有1908条查询结果,搜索用时 15 毫秒
61.
62.
Denise Risch Nicholas J. Gales Jason Gedamke Lars Kindermann Douglas P. Nowacek Andrew J. Read Ursula Siebert Ilse C. Van Opzeeland Sofie M. Van Parijs Ari S. Friedlaender 《Biology letters》2014,10(4)
For decades, the bio-duck sound has been recorded in the Southern Ocean, but the animal producing it has remained a mystery. Heard mainly during austral winter in the Southern Ocean, this ubiquitous sound has been recorded in Antarctic waters and contemporaneously off the Australian west coast. Here, we present conclusive evidence that the bio-duck sound is produced by Antarctic minke whales (Balaenoptera bonaerensis). We analysed data from multi-sensor acoustic recording tags that included intense bio-duck sounds as well as singular downsweeps that have previously been attributed to this species. This finding allows the interpretation of a wealth of long-term acoustic recordings for this previously acoustically concealed species, which will improve our understanding of the distribution, abundance and behaviour of Antarctic minke whales. This is critical information for a species that inhabits a difficult to access sea-ice environment that is changing rapidly in some regions and has been the subject of contentious lethal sampling efforts and ongoing international legal action. 相似文献
63.
Muriel Cario Catherine Pain Priscilla Kaulanjan‐Checkmodine Daniela Masia Gabriele Delia Vincent Casoli Pierre Costet Jean‐Franois Goussot Vronique Guyonnet‐Duperat Alice Bibeyran Khaled Ezzedine Corinne Reymermier Valrie Andre‐Frei Alain Taieb 《Pigment cell & melanoma research》2020,33(3):435-445
Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF‐2 and keratin 5. In vitro analysis confirmed that FGF‐2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling–Degos Disease (DDD) have already been associated with the pheomelanosome–eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age‐related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders. 相似文献
64.
The pollen of all four genera of Gronovioideae—Cevallia, Fuertesia, Gronovia, and Petalonyx—was examined in light microscopy, and scanning and transmission electron microscopy. The pollen of Cevallia, of Fuertesia, and of Gronovia can be easily distinguished from each other and from all remaining Loasaceae. Only Petalonyx, with a striate tectum, shows a clear relationship to the Mentzelioideae and Loasoideae, the vast majority of which have striate-reticulate or striate tecta. The trichome data are mostly congruent with the pollen data: Cevallia, Fuertesia, and Gronovia each have a distinctive trichome not known to occur elsewhere in the family, while Petalonyx has only the common types. A cladistic analysis of Gronovioideae utilizing Mentzelia as the outgroup proposes that Cevallia, Gronovia, and Fuertesia are a sister group to Petalonyx within the subfamily. The relationships of the four genera to each other and of Gronovioideae to the Loasaceae are discussed. 相似文献
65.
Making water flow: a comparison of the hydrodynamic characteristics of 12 different benthic biological flumes 总被引:1,自引:0,他引:1
Per R. Jonsson Luca A. van Duren Muriel Amielh Ragnhild Asmus Rebecca J. Aspden Darius Daunys Michael Friedrichs Patrick L. Friend Frédéric Olivier Nick Pope Elimar Precht Pierre-Guy Sauriau Estelle Schaaff 《Aquatic Ecology》2006,40(4):409-438
Flume tanks are becoming increasingly important research tools in aquatic ecology, to link biological to hydrodynamical processes. There is no such thing as a “standard flume tank”, and no flume tank is suitable for every type of research question. A series of experiments has been carried out to characterise and compare the hydrodynamic characteristics of 12 different flume tanks that are designed specifically for biological research. These facilities are part of the EU network BioFlow. The flumes could be divided into four basic design types: straight, racetrack, annular and field flumes. In each facility, two vertical velocity profiles were measured: one at 0.05 m s−1 and one at 0.25 m s−1. In those flumes equipped with Acoustic Doppler Velocimeters (ADV), time series were also recorded for each velocity at two heights above the bottom: 0.05 m and 20% of the water depth. From these measurements turbulence characteristics, such as TKE and Reynolds stress, were derived, and autocorrelation spectra of the horizontal along-stream velocity component were plotted. The flume measurements were compared to two sets of velocity profiles measured in the field.Despite the fact that some flumes were relatively small, turbulence was fully developed in all channels. Straight and racetrack flumes generally produced boundary layers with a clearly definable logarithmic layer, similar to measurements in the field taken under steady flow conditions. The two annular flumes produced relatively thin boundary layers, presumably due to secondary flows developing in the curved channels. The profiles in the field flumes also differed considerably from the expected log profile. This may either have been due the construction of the flume, or due to unsteady conditions during measurement. Constraints imposed by the different flume designs on the suitability for different types of boundary layer research, as well as scaling issues are discussed. 相似文献
66.
Gosset P Bureau F Angeli V Pichavant M Faveeuw C Tonnel AB Trottein F 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(10):4943-4952
Among the factors produced at inflammatory sites and those capable of modulating dendritic cell (DC) functions, PGD(2) may be important in the outcome of immune responses. The biological roles for PGD(2) are in part effected through two plasma membrane G protein-coupled receptors: the D prostanoid (DP) receptor and the chemoattractant receptor-homologous molecule expressed on Th2 lymphocytes (CRTH2). In this report, we studied the effects of PGD(2) and of its major physiological metabolite, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), on the functions of human monocyte-derived DC. First, we show that PGD(2) exerts in vitro chemotactic effects on monocytes via CRTH2 activation while it inhibits the chemokine-driven migration of monocyte-derived DC through DP. We also report that PGD(2) and 15d-PGJ(2) alter the LPS- and allergen-induced DC maturation and enhance the CD80/CD86 ratio on mature DC in a DP- and CRTH2-independent manner. Moreover, PGD(2) and 15d-PGJ(2) strongly reduce the secretion of the Th1 promoting cytokine IL-12 and affect the synthesis of chemokines involved in Th1 cell chemotaxis, particularly CXCL10. Inhibition of cytokine/chemokine secretion implicates at least in part DP, but not CRTH2. The effects exerted by PGD(2) are associated with the phosphorylation of CREB, but do not parallel with the deactivation of the NF-kappa B and mitogen-activated protein kinase pathways. In contrast, 15d-PGJ(2) seems to target other cellular proteins. Finally, in a model of Th CD45RA(+) differentiation induced by allergen- and superantigen-pulsed DC, PGD(2) impacts on the orientation of the immune response by favoring a Th2 response. 相似文献
67.
During the past years, major advances have been made in understanding the sequential events involved in neural plate patterning. Positional information is already conferred to cells of the neural plate at the time of its induction in the ectoderm. The interplay between the BMP- and the Fgf- signaling pathways leads to the induction of neural cell fates. Thus, neural induction and neural plate patterning are overlapping processes. Later, at the end of gastrulation, positional cell identities within the neural plate are refined and maintained by the action of several neural plate organizers. By locally emitting signaling molecules, they influence the fate of the developing nervous system with high regional specificity. Recent advances have been made both in understanding the mechanisms that dictate the relative position of these organizers and in how signaling molecules spread from them with high spatial and temporal resolution. 相似文献
68.
The photoreaction of opsin regenerated with 9-demethylretinal has been investigated by UV-vis spectroscopy, flash photolysis experiments, and Fourier transform infrared difference spectroscopy. In addition, the capability of the illuminated pigment to activate the retinal G-protein has been tested. The photoproduct, which can be stabilized at 77 K, resembles more the lumirhodopsin species, and only minor further changes occur upon warming the sample to 170 K (stabilizing lumirhodopsin). UV-vis spectroscopy reveals no further changes at 240 K (stabilizing metarhodopsin I), but infrared difference spectroscopy shows that the protein as well as the chromophore undergoes further molecular changes which are, however, different from those observed for unmodified metarhodopsin I. UV-vis spectroscopy, flash photolysis experiments, and infrared difference spectroscopy demonstrate that an intermediate different from metarhodopsin II is produced at room temperature, of which the Schiff base is still protonated. The illuminated pigment was able to activate G-protein, as assayed by monitoring the exchange of GDP for GTP gamma S in purified G-protein, only to a very limited extent (approximately 8% as compared to rhodopsin). The results are interpreted in terms of a specific steric interaction of the 9-methyl group of the retinal in rhodopsin with the protein, which is required to initiate the molecular changes necessary for G-protein activation. The residual activation suggests a conformer of the photolyzed pigment which mimics metarhodopsin II to a very limited extent. 相似文献
69.
Luqiao?Wang Hangfei?Fu Gayani?Nanayakkara Yafeng?Li Ying?Shao Candice?Johnson Jiali?Cheng William?Y.?Yang Fan?Yang Muriel?Lavallee Yanjie?Xu Xiaoshu?Cheng Hang?Xi Jonathan?Yi Jun?Yu Eric?T.?Choi Hong?Wang Xiaofeng?Yang
Background
Caspase-1 is present in the cytosol as an inactive zymogen and requires the protein complexes named “inflammasomes” for proteolytic activation. However, it remains unclear whether the proteolytic activity of caspase-1 is confined only to the cytosol where inflammasomes are assembled to convert inactive pro-caspase-1 to active caspase-1.Methods
We conducted meticulous data analysis method?s on proteomic, protein interaction, protein intracellular localization, and gene expressions of 114 experimentally identified caspase-1 substrates and 38 caspase-1 interaction proteins in normal physiological conditions and in various pathologies.Results
We made the following important findings: (1) Caspase-1 substrates and interaction proteins are localized in various intracellular organelles including nucleus and secreted extracellularly; (2) Caspase-1 may get activated in situ in the nucleus in response to intra-nuclear danger signals; (3) Caspase-1 cleaves its substrates in exocytotic secretory pathways including exosomes to propagate inflammation to neighboring and remote cells; (4) Most of caspase-1 substrates are upregulated in coronary artery disease regardless of their subcellular localization but the majority of metabolic diseases cause no significant expression changes in caspase-1 nuclear substrates; and (5) In coronary artery disease, majority of upregulated caspase-1 extracellular substrate-related pathways are involved in induction of inflammation; and in contrast, upregulated caspase-1 nuclear substrate-related pathways are more involved in regulating cell death and chromatin regulation.Conclusions
Our identification of novel caspase-1 trafficking sites, nuclear and extracellular inflammasomes, and extracellular caspase-1-based inflammation propagation model provides a list of targets for the future development of new therapeutics to treat cardiovascular diseases, inflammatory diseases, and inflammatory cancers.70.