首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  33篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
11.
In our previous study of 3-year-old children in a dioxin contamination hot spot in Vietnam, the high total dioxin toxic equivalent (TEQ-PCDDs/Fs)-exposed group during the perinatal period displayed lower Bayley III neurodevelopmental scores, whereas the high 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-exposed group displayed increased autistic traits. In autistic children, urinary amino acid profiles have revealed metabolic alterations in the amino acids that serve as neurotransmitters in the developing brain. Therefore, our present study aimed to investigate the use of alterations in urinary amino acid excretion as biomarkers of dioxin exposure-induced neurodevelopmental deficits in highly exposed 3-year-old children in Vietnam. A nested case-control study of urinary analyses was performed for 26 children who were selected from 111 3-year-old children whose perinatal dioxin exposure levels and neurodevelopmental status were examined in follow-up surveys conducted in a dioxin contaminated hot spot. We compared urinary amino acid levels between the following 4 groups: (1) a high TEQ-PCDDs/Fs and high TCDD-exposed group; (2) a high TEQ-PCDDs/Fs but low TCDD-exposed group; (3) a low TEQ-PCDDs/Fs exposed and poorly developed group; and (4) a low TEQ-PCDDs/Fs exposed and well-developed group. Urinary levels of histidine and tryptophan were significantly decreased in the high TEQ-PCDDs/Fs and high TCDD group, as well as in the high TEQ-PCDDs/Fs but low TCDD group, compared with the low TEQ-PCDDs/Fs and well-developed group. However, the ratio of histidine to glycine was significantly lower only in the high TEQ-PCDDs/Fs and high TCDD group. Furthermore, urinary histidine levels and the ratio of histidine to glycine were significantly correlated with neurodevelopmental scores, particularly for language and fine motor skills. These results indicate that urinary histidine is specifically associated with dioxin exposure-induced neurodevelopmental deficits, suggesting that urinary histidine may be a useful marker of dioxin-induced neurodevelopmental deficits and that histaminergic neurotransmission may be an important pathological contributor to dioxin-mediated neurotoxicity.  相似文献   
12.
There are more than 50 cadmium (Cd) polluted areas in Japan. The severest general environmental Cd polluted area in Japan was the Jinzu River basin in Toyama Prefecture where Itai-itai disease had been endemic. The present study aimed to compare organ Cd concentrations of inhabitants who had been exposed to different levels of environmental Cd and to clarify the health effects of the environmental Cd exposure in Japan. Since 1960 we have measured tissue Cd concentrations of inhabitants with a history of living in a different Cd polluted areas. Study population living in Cd polluted areas were 36 (1 male, 35 females) patients with Itai-itai disease, 20 (7 males, 13 females) subjects suspected of having Itai-itai disease, 8 (2 males, 6 females) inhabitants in Cd polluted areas other than the Jinzu River basin. Subjects who had lived in Cd non-polluted area were 72 inhabitants. Cd concentrations in liver, pancreas and thyroid of those living in Cd polluted areas were as high as those of patients with Itai-itai disease, and their Cd concentrations in renal cortex were as low as those of patients with Itai-itai disease. The present study demonstrated that tissue Cd concentrations of some inhabitants in Cd polluted areas other than Jinzu River basin are equal to those of the patients with Itai-itai disease and that patients with Itai-itai disease were present even in these areas.  相似文献   
13.
Previously, we revealed that Choto-san (Diao-teng-san in Chinese), a Kampo formula, is effective on vascular dementia clinically, and the hooks and stems of Uncaria sinensis (Oliv.) Havil., a medicinal plant comprising Chotosan, has a neuroprotective effect in vitro. In the present study, for the purpose of clarifying their effects in vivo, we investigated whether the oral administration of Choto-san extract (CSE) or U. sinensis extract (USE) reduces delayed neuronal death following ischemia/reperfusion (i/rp) in gerbils. Transient forebrain ischemia was induced by bilateral carotid artery occlusion for 4 min, and two doses (1.0% and 3.0%) of CSE or USE were dissolved in drinking water and provided to the gerbils ad libitum from 7 days prior to i/rp until 7 days after i/rp. It was found that 1.0% and 3.0% CSE treatments significantly reduced pyramidal cell death in the hippocampal CA1 region at 7 days post i/rp. Three percent USE treatment also inhibited pyramidal cell death significantly at 7 days after i/rp. Superoxide anion and hydroxyl radical scavenging activities of the homogenized hippocampus at 7 days after i/rp in the 1.0% CSE- and 3.0% USE-treated groups were significantly enhanced compared to those of control. Further, lipid peroxide and NO2-/NO3- levels of the homogenized hippocampus at 48h after i/rp in the 1.0% CSE- and 3.0% USE-treated groups were significantly lower than those of control. These results suggest that the oral administration of CSE or USE provides a protective effect against transient ischemia-induced delayed neuronal death by reducing oxidative damage to neurons.  相似文献   
14.
Cognitive deficits and negative symptoms are important therapeutic targets for schizophrenia and autism disorders. Although reduction of phase-locked gamma oscillation has been suggested to be a result of reduced parvalbumin-immunoreactive (putatively, GABAergic) neurons, no direct correlations between these have been established in these disorders. In the present study, we investigated such relationships during pharmacological treatment with a newly synthesized drug, T-817MA, which displays neuroprotective and neurotrophic effects. In this study, we used platelet-derived growth factor receptor-β gene knockout (PDGFR-β KO) mice as an animal model of schizophrenia and autism. These mutant mice display a reduction in social behaviors; deficits in prepulse inhibition (PPI); reduced levels of parvalbumin-immunoreactive neurons in the medical prefrontal cortex, hippocampus, amygdala, and superior colliculus; and a deficit in of auditory phase-locked gamma oscillations. We found that oral administration of T-817MA ameliorated all these symptoms in the PDGFR-β KO mice. Furthermore, phase-locked gamma oscillations were significantly correlated with the density of parvalbumin-immunoreactive neurons, which was, in turn, correlated with PPI and behavioral parameters. These findings suggest that recovery of parvalbumin-immunoreactive neurons by pharmacological intervention relieved the reduction of phase-locked gamma oscillations and, consequently, ameliorated PPI and social behavioral deficits. Thus, our findings suggest that phase-locked gamma oscillations could be a useful physiological biomarker for abnormality of parvalbumin-immunoreactive neurons that may induce cognitive deficits and negative symptoms of schizophrenia and autism, as well as of effective pharmacological interventions in both humans and experimental animals.  相似文献   
15.
It has been reported that antipsychotic dopamine-D2-receptor (D2R) antagonists affected other neurotransmitter systems. In the present study, the effects of a D2R agonist, bromocriptine, and a D2R antagonist, spiperone, on brain activity were investigated using wild-type mice (WT) with intact D2Rs, and D2R-knockout mice (D2R-KO) lacking D2Rs by functional magnetic resonance imaging. In the WT, flow-weighted signal intensity significantly increased after administration of bromocriptine in the hippocampal formation. In contrast, signal intensity significantly decreased after administration of spiperone in the somatosensory-motor cortices, thalamus, anterior cingulate cortex, caudate-putamen, nucleus accumbens, hippocampal formation, and amygdala. In the D2R-KO, however, no significant changes were observed after administration of either bromocriptine or spiperone. The present results indicated that the D2R-KO lacked sensitivity to D2R agonist and antagonist in agreement with its genetic defects, which confirmed that the changes in brain activity in the WT after administration of either drug were mediated through D2Rs. These results suggest that antipsychotic D2R antagonists affect activity of the same brain regions of human patients through D2Rs, as observed in the present study. These changes in brain activity might be related to therapeutic efficacy as well as side effects of antipsychotic drugs on schizophrenic patients.  相似文献   
16.
Vascular remodeling in hypertensive transgenic mice.   总被引:1,自引:0,他引:1  
We physiologically and histopathologically analyzed vascular damage due to hypertension and vascular remodeling in hypertensive transgenic mice (Tsukuba hypertensive mice; THM). Pubertal (6-week-old) THM already had hypertension similar to blood pressure in adult THM due to an enhanced renin angiotensin system (RAS). They progressively developed remarkable vascular hypertrophy composed of dedifferentiation of vascular smooth muscle cells (VSMCs) and extracellular matrix accumulation in the thoracic aorta, and VSMC hyperplasia was predominant in the abdominal aorta. THM are therefore a useful animal model for studying vascular remodeling mediated by enhanced RAS.  相似文献   
17.
18.
Dioxin concentrations remain elevated in the environment and in humans residing near former US Air Force bases in South Vietnam. Our previous epidemiological studies showed adverse effects of dioxin exposure on neurodevelopment for the first 3 years of life. Subsequently, we extended the follow-up period and investigated the influence of perinatal dioxin exposure on neurodevelopment, including motor coordination and higher cognitive ability, in preschool children. Presently, we investigated 176 children in a hot spot of dioxin contamination who were followed up from birth until 5 years old. Perinatal dioxin exposure levels were estimated by measuring dioxin levels in maternal breast milk. Dioxin toxicity was evaluated using two indices; toxic equivalent (TEQ)-polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs) and concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Coordinated movements, including manual dexterity, aiming and catching, and balance, were assessed using the Movement Assessment Battery for Children, Second Edition (Movement ABC-2). Cognitive ability was assessed using the nonverbal index (NVI) of the Kaufman Assessment Battery for Children, Second Edition (KABC-II). In boys, total test and balance scores of Movement ABC-2 were significantly lower in the high TEQ- PCDDs/Fs group compared with the moderate and low exposure groups. NVI scores and the pattern reasoning subscale of the KABC-II indicating planning ability were also significantly lower in the high TCDD exposure group compared with the low exposure group of boys. However, in girls, no significant differences in Movement ABC-2 and KABC-II scores were found among the different TEQ-PCDDs/Fs and TCDD exposure groups. Furthermore, in high risk cases, five boys and one girl highly exposed to TEQ-PCDDs/Fs and TCDD had double the risk for difficulties in both neurodevelopmental skills. These results suggest differential impacts of TEQ-PCDDs/Fs and TCDD exposure on motor coordination and higher cognitive ability, respectively. Moreover, high TEQ-PCDDs/Fs exposure combined with high TCDD exposure may increase autistic traits combined with developmental coordination disorder.  相似文献   
19.
Prepulse inhibition (PPI) is the decrease of startle reflex amplitude when a slight stimulus is previously generated. This paradigm may provide valuable information about sensorimotor gating functionality. Here we aimed at determining the inhibited and uninhibited startle response of capuchin monkeys (Sapajus spp.), and to evaluate the role of the superior colliculus in PPI. Capuchin monkeys were tested in a whole-body protocol, to determine the best startle amplitude and interstimuli interval. Additionally we tested two subjects with bilateral superior colliculus damage in this protocol. Results show that 115 dB auditory pulse has induced the best startle response. In contrast to reports in other species, no habituation to the auditory stimuli was observed here in capuchins. Also, startle reflex inhibition was optimal after 120 msec interstimuli interval. Finally, there was a downward tendency of percentage inhibition in superior colliculus-lesioned monkeys. Our data provides the possibility of further studies with whole-body protocol in capuchin monkeys and reinforces the importance of the superior colliculus in PPI.  相似文献   
20.
There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号