首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3882篇
  免费   232篇
  国内免费   2篇
  4116篇
  2022年   24篇
  2021年   45篇
  2020年   29篇
  2019年   49篇
  2018年   50篇
  2017年   51篇
  2016年   86篇
  2015年   125篇
  2014年   138篇
  2013年   240篇
  2012年   249篇
  2011年   230篇
  2010年   163篇
  2009年   167篇
  2008年   227篇
  2007年   227篇
  2006年   217篇
  2005年   221篇
  2004年   201篇
  2003年   201篇
  2002年   192篇
  2001年   53篇
  2000年   51篇
  1999年   65篇
  1998年   42篇
  1997年   41篇
  1996年   37篇
  1995年   27篇
  1994年   21篇
  1993年   41篇
  1992年   56篇
  1991年   66篇
  1990年   50篇
  1989年   57篇
  1988年   38篇
  1987年   30篇
  1986年   37篇
  1985年   29篇
  1984年   33篇
  1983年   32篇
  1982年   33篇
  1981年   20篇
  1980年   9篇
  1979年   12篇
  1978年   15篇
  1977年   10篇
  1975年   12篇
  1974年   17篇
  1968年   5篇
  1967年   5篇
排序方式: 共有4116条查询结果,搜索用时 17 毫秒
111.
Progesterone is a mammalian gonadal hormone. In the current study, we identified and quantified progesterone in a range of higher plants by using GC-MS and examined its effects on the vegetative growth of plants. The growth of Arabidopsis (Arabidopsis thaliana) seedlings was promoted by progesterone at low concentrations but suppressed at higher concentrations under both light and dark growth conditions. The growth of the gibberellin-deficient mutant lh of pea (Pisum sativum) was also promoted by progesterone. An earlier study demonstrated that progesterone binds to MEMBRANE STEROID BINDING PROTEIN 1 (MSBP1) of Arabidopsis. In this work, we cloned the homologous genes of Arabidopsis, MSBP2 and STEROID BINDING PROTEIN (SBP), as well as of rice (Oryza sativa), OsMSBP1, OsMSBP2 and OsSBP and examined their expression in plant tissues. All of these genes, except OsMSBP1, were expressed abundantly in plant tissues. The roles of progesterone in plant growth were also discussed.  相似文献   
112.
The members of the cyprinid subfamily Gobioninae, commonly called gudgeons, form one of the most well-established assemblages in the family Cyprinidae. The subfamily is a species-rich group of fishes, these fishes display diverse life histories, appearances, and behavior. The phylogenetic relationships of Gobioninae are examined using sequence data from four loci: cytochrome b, cytochrome c oxidase I, opsin, and recombination activating gene 1. This investigation produced a data matrix of 4114 bp for 162 taxa that was analyzed using parsimony, maximum likelihood, and Bayesian inference methods. The phylogenies our analyses recovered corroborate recent studies on the group. The subfamily Gobioninae is monophyletic and composed of three major lineages. We find evidence for a Hemibarbus-Squalidus group, and the tribes Gobionini and Sarcocheilichthyini, with the Hemibarbus-Squalidus group sister to a clade of Gobionini-Sarcocheilichthyini. The Hemibarbus-Squalidus group includes those two genera; the tribe Sarcocheilichthyini includes Coreius, Coreoleuciscus, Gnathopogon, Gobiocypris, Ladislavia, Paracanthobrama, Pseudorasbora, Pseudopungtungia, Pungtungia, Rhinogobio, and Sarcocheilichthys; the tribe Gobionini includes Abbottina, Biwia, Gobio, Gobiobotia, Huigobio, Microphysogobio, Platysmacheilus, Pseudogobio, Romanogobio, Saurogobio, and Xenophysogobio. The monotypic Acanthogobio is placed into the synonymy of Gobio. We tentatively assign Belligobio to the Hemibarbus-Squalidus group and Mesogobio to Gobionini; Paraleucogobio and Parasqualidus remain incertae sedis. Based on the topologies presented, the evolution of swim bladder specializations, a distinctive feature among cyprinids, has occurred more than once within the subfamily.  相似文献   
113.
Human acidic mammalian chitinase (hAMCase) was recently shown to be involved in the development of asthma, suggesting a possible application for hAMCase inhibitors as novel therapeutic agents for asthma. We therefore initiated drug discovery research into hAMCase using a combination of in silico methodologies and a hAMCase assay system. We first selected 23 candidate hAMCase inhibitors from a database of four million compounds using a multistep screening system combining Tripos Topomer Search technology, a docking calculation and two-dimensional molecular similarity analysis. We then measured hAMCase inhibitory activity of the selected compounds and identified seven compounds with IC50 values ?100 μM. A model describing the binding modes of these hit compounds to hAMCase was constructed, and we discuss the structure–activity relationships of the compounds we identified, suggested by the model and the actual inhibitory activities of the compounds.  相似文献   
114.
MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1−/− mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1−/− mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1−/− mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1−/− mice. Transplantation of MCP-1−/− bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1−/− mice increased lung metastasis. The primary tumors of MCP-1−/− mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1−/− mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment.  相似文献   
115.
Chick cardiac membranes were affinity labelled by cross-linking to membrane-bound 125I-endothelin-1 with disuccinimidyl tartarate. SDS/PAGE and autoradiographic analysis of the 125I-endothelin-1-labelled material in the presence or absence of 2-mercaptoethanol revealed one major labelled band, corresponding to a molecular mass of 53 kDa, whose appearance was dose-dependently inhibited by the addition of unlabelled endothelin-1 (1-100 nM). Subtracting the molecular mass of 125I-endothelin-1 and disuccinimidyl tartarate, the binding protein appeared to have a molecular mass of 50 kDa. To investigate further the molecular properties of endothelin receptor, the 125I-endothelin-1-endothelin-receptor complex was solubilized from chick cardiac membranes using the detergent digitonin. Sucrose gradient sedimentation of the solubilized complex indicated a sedimentation coefficient of 13 S, whereas the complex of (+)-[3H]PN200-110, a dihydropyridine derivative, and dihydropyridine-sensitive Ca2+ channels sedimented at 22 S. A monoclonal antibody raised against dihydropyridine-sensitive Ca2+ channels from the chick brain did not immunoprecipitate the 125I-endothelin-1-endothelin-receptor complex. These data suggest that endothelin receptor is clearly distinct from dihydropyridine-sensitive Ca2+ channels and endothelin has its own specific 50-kDa receptor.  相似文献   
116.
In order to clarify the role of micro-organisms in the carbon cycle of the boreal forest ecosystem, the vertical distribution of soil carbon, soil microbial biomass and respiratory activity was studied in a black spruce forest near Candle Lake in Saskatchewan, Canada. The total amount of carbon contained in moss and soil layers (to the depth of 50cm beneath the mineral soil surface) was 7.2kgm–2, about 47% of which was in the L and FH horizons of the soil. Soil microbial biomass per dry weight of soil was largest in the L horizon, while the biomass per ground area was largest in the FH horizon. Soil respiration rate, measured using a portable infrared gas analyzer, was highest in the FH horizon, exceeding 50% of the total soil respiration. Low but significant CO2 emission was detected even in deeper soil horizon (E horizon). We also examined the respiration rate of cut roots and the effect of root excision on respiration. The contribution of root respiration to total soil respiration, calculated from root biomass and respiration rate of cut roots, was about 54%. The amount of carbon evolved through microbial respiration during the snow-free season (June–October) was estimated as 221gCm–2. Micro-organisms in the L horizon showed high respiratory activity as compared with those in deeper soil horizons.  相似文献   
117.
The linear ubiquitin chain assembly complex (LUBAC) plays a crucial role in activating the canonical NF‐κB pathway, which is important for B‐cell development and function. Here, we describe a mouse model (B‐HOIPΔlinear) in which the linear polyubiquitination activity of LUBAC is specifically ablated in B cells. Canonical NF‐κB and ERK activation, mediated by the tumour necrosis factor (TNF) receptor superfamily receptors CD40 and TACI, was impaired in B cells from B‐HOIPΔlinear mice due to defective activation of the IKK complex; however, B‐cell receptor (BCR)‐mediated activation of the NF‐κB and ERK pathways was unaffected. B‐HOIPΔlinear mice show impaired B1‐cell development and defective antibody responses to thymus‐dependent and thymus‐independent II antigens. Taken together, these data suggest that LUBAC‐mediated linear polyubiquitination is essential for B‐cell development and activation, possibly via canonical NF‐κB and ERK activation induced by the TNF receptor superfamily, but not by the BCR.  相似文献   
118.
119.
Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients.  相似文献   
120.
To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment (“Medaka Osteoclast”) was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation–reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号