首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5208篇
  免费   376篇
  国内免费   2篇
  5586篇
  2022年   32篇
  2021年   63篇
  2020年   31篇
  2019年   55篇
  2018年   61篇
  2017年   64篇
  2016年   98篇
  2015年   150篇
  2014年   178篇
  2013年   287篇
  2012年   294篇
  2011年   291篇
  2010年   199篇
  2009年   200篇
  2008年   287篇
  2007年   290篇
  2006年   271篇
  2005年   262篇
  2004年   247篇
  2003年   264篇
  2002年   246篇
  2001年   120篇
  2000年   116篇
  1999年   130篇
  1998年   63篇
  1997年   51篇
  1996年   53篇
  1995年   44篇
  1994年   43篇
  1993年   56篇
  1992年   112篇
  1991年   104篇
  1990年   83篇
  1989年   104篇
  1988年   71篇
  1987年   59篇
  1986年   53篇
  1985年   49篇
  1984年   46篇
  1983年   35篇
  1982年   37篇
  1981年   27篇
  1980年   15篇
  1979年   31篇
  1978年   27篇
  1977年   20篇
  1976年   14篇
  1975年   16篇
  1974年   36篇
  1970年   17篇
排序方式: 共有5586条查询结果,搜索用时 15 毫秒
121.
Our studies, which are aimed at understanding the catalytic mechanism of the beta subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to clarify the functional roles of several putative active site residues. Although previous chemical modification studies have suggested that histidine 86, arginine 148, and cysteine 230 are essential residues in the beta subunit, our present findings that beta subunits with single amino acid replacements at these positions have partial activity show that these 3 residues are not essential for catalysis or substrate binding. These conclusions are consistent with the recently determined three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Amino acid substitution of lysine 87, which forms a Schiff base with pyridoxal phosphate in the wild type beta subunit, yields an inactive form of the beta subunit which binds alpha subunit, pyridoxal phosphate, and L-serine. We also report a rapid and efficient method for purifying wild type and mutant forms of the alpha 2 beta 2 complex from S. typhimurium from an improved enzyme source. The enzyme, which is produced by a multicopy plasmid encoding the trpA and trpB genes of S. typhimurium expressed in Escherichia coli, is crystallized from crude extracts by the addition of 6% poly(ethylene glycol) 8000 and 5 mM spermine. This new method is also used in the accompanying paper to purify nine alpha 2 beta 2 complexes containing mutant forms of the alpha subunit.  相似文献   
122.
Despite increasing importance of protein glycosylation, most of the large-scale glycoproteomics have been limited to profiling the sites of N-glycosylation. However, in-depth knowledge of protein glycosylation to uncover functions and their clinical applications requires quantitative glycoproteomics eliciting both peptide and glycan sequences concurrently. Here we describe a novel strategy for the multiplexed quantitative mouse serum glycoproteomics based on a specific chemical ligation, namely, reverse glycoblotting technique, focusing sialic acids and multiple reaction monitoring (MRM). LC-MS/MS analysis of de-glycosylated peptides identified 270 mouse serum peptides (95 glycoproteins) as sialylated glycopeptides, of which 67 glycopeptides were fully characterized by MS/MS analyses in a straightforward manner. We revealed the importance of a fragment ion containing innermost N-acetylglucosamine (GlcNAc) residue as MRM transitions regardless the sequence of the peptides. Versatility of the reverse glycoblotting-assisted MRM assays was demonstrated by quantitative comparison of 25 targeted glycopeptides from 16 proteins between mice with homo and hetero types of diabetes disease model.Clinical proteomics focusing on the identification and validation of biomarkers and the discovery of proteins as therapeutic targets is an emerging and highly important area of proteomics. Biomarkers are measurable indicators of a specific biological state (particularly one relevant to the risk of contraction) and the presence or the stage of disease, and are thus expected to be useful for the prediction, detection, and diagnosis of disease as well as to follow the efficacy, toxicology, and side effects of drug treatment, and to provide new functional insights into biological processes.At present, proteomics methods based on mass spectrometry (MS) have emerged as the preferred strategy for discovery of diagnostic, prognostic, and therapeutic protein biomarkers. Most biomarker discovery studies use unbiased, “identified-based” approaches that rely on high performance mass spectrometers and extensive sample processing. Semiquantitative comparisons of protein relative abundance between disease and control patient samples are used to identify proteins that are differentially expressed and, thus, to populate lists of potential biomarkers. De novo proteomics discovery experiments often result in tens to hundreds of candidate biomarkers that must be subsequently verified in serum. However, despite the large numbers of putative biomarkers, only a small number of them are passed through the development and validation process into clinical practice, and their rate of introduction is declining. The first non-standard abbreviation (MS above is standard) must be footnoted the same as the abbreviation footnote, and MRM must be the first abbreviation in the list because it is the one footnoted. After that the order does not matter.Targeted proteomics using multiple reaction monitoring (MRM)1 is emerging as a technology that complements the discovery capabilities of shotgun strategies as well as an alternative powerful novel MS-based approach to measure a series of candidate biomarkers (17). Therefore, MRM is expected to provide a powerful high throughput platform for biomarker validation, although clinical validation of novel biomarkers has been traditionally relying on immunoassays (8, 9). MRM exploits the unique capabilities of triple quadrupoles (QQQ) MS for quantitative analysis. In MRM, the first and the third quadrupoles act as filters to specifically select predefined m/z values corresponding to the peptide precursor ion and specific fragment ion of the peptide, whereas the second quadrupole serves as collision cell. Several such transitions (precursor/fragment ion pairs) are monitored over time, yielding a set of chromatographic traces with retention time and signal intensity for a specific transition as coordinates. These measurements have been multiplexed to provide 30 or more specific assays in one run. Such methods are slowly gaining acceptance in the clinical laboratory for the routine measurement of endogenous metabolites (10) (e.g. in screening newborns for a panel of inborn errors of metabolism) some drugs (11) (e.g. immunosuppressants), and the component analysis of sugars (12).One of the profound challenges in clinical proteomics is the need to handle highly complex biological mixtures. This complexity presents unique analytical challenges that are further magnified with the use of clinical serum/plasma samples to search for novel biomarkers of human disease. The serum proteome is composed of tens of thousands of unique proteins, of which concentrations may exceed 10 orders of magnitude. Protein glycosylation, one of the most common post-translational modifications, generates tremendous diversity, complexity, and heterogeneity of gene products. It changes the biological and physical properties of proteins, which include functions as signals or ligands to control their distribution, antigenicity, metabolic fate, stability, and solubility. Protein glycosylation, in particular by N-linked glycans, is prevalent in proteins destined for extracellular environments. These include proteins on the extracellular side of the plasma membrane, secreted proteins, and proteins contained in body fluids (such as blood serum, cerebrospinal fluid, urine, breast milk, saliva, lung lavage fluid, or pancreatic juice). Considering that such body fluids are most easily accessible for diagnostic and therapeutic purposes, it is not surprising that many clinical biomarkers and therapeutic targets are glycoproteins. These include, for example, cancer antigen 125 (CA125) in ovarian cancer, human epidermal growth factor receptor 2 (Her2/neu) in breast cancer, and prostate-specific antigen (PSA) in prostate cancer. In addition, changes in the extent of glycosylation and the structure of N-glycans or O-glycans attached to proteins on the cell surface and in body fluids have been shown to correlate with cancer and other disease states, highlighting the clinical importance of this modification as an indicator or effector of pathologic mechanisms (1316). Thus, clinical proteomic platforms should have capability to provide protein glycosylation information as well as sufficient analytical depth to reliably detect and quantify specific proteins with sufficient accuracy and throughput.To improve the detection limits to the required sensitivities, one needs to dramatically reduce the complexity of the sera samples. For focused glycoproteomics, several techniques using lectins or antibodies enabling the large-scale identification of glycoproteins have recently been developed (1719). Notably, Zhang et al. reported a method for the selective isolation of peptides based on chemical oxidation of the carbohydrate moiety and subsequent conjugation to a solid support using hydrazide chemistry (2026). However, it is not possible to provide any structural information about N-glycans because the MS analysis is performed on peptides of which N-glycans are removed preferentially by treating with peptide N-glycanase (PNGase). In 2007, we developed a method for rapid enrichment analysis of peptides bearing sialylated N-glycans on the MALDI-TOF-MS platform (27). The method involves highly selective oxidation of sialic acid residues of glycopeptides to elaborate terminal aldehyde group and subsequent enrichment by chemical ligation with a polymer reagent, namely, reverse glycoblotting technique inspired from an original concept of glycoblotting method (28). This method, in principle, is capable identifying both glycan and peptide sequences concurrently. Recently, Nilsson et al. reported that glycopeptides from human cerebrospinal fluid can be enriched on the basis of the same principle as the reverse glycoblotting protocol, and captured glycopeptides were analyzed with ESI FT-ICR MS (29). Because it is well known that sialic acids play important roles in various biological processes including cell differentiation, immune response, and oncogenesis (3034), our attention has been directed toward feasibility of the reverse glycoblotting technique in quantitative analysis of the specific glycopeptides carrying sialic acid(s) by combining with multiplexed MRM-based MS.  相似文献   
123.
The epithelium of upper respiratory tissues such as nasal mucosa forms a continuous barrier to a wide variety of exogenous antigens. The epithelial barrier function is regulated in large part by the intercellular junctions, referred to as gap and tight junctions. However, changes of gap and tight junctions during differentiation of human nasal epithelial (HNE) cells are still unclear. In the present study, to investigate changes of gap and tight junctions during differentiation of HNE cells in vitro, we used primary human HNE cells cocultured with primary human nasal fibroblast (HNF) cells in a noncontact system. In HNE cells cocultured with HNF cells for 2 weeks, numerous elongated cilia-like structures were observed compared to those without HNF cells. In the coculture, downregulation of Cx26 and upregulation of Cx30.3 and Cx31 were observed together with extensive gap junctional intercellular communication. Furthermore, expression of the tight junction proteins claudin-1, claudin-4, occludin and ZO-2 was increased. These results suggest that switching in expression of connexins and induction of tight junction proteins may be closely associated with differentiation of HNE cells in vitro and that differentiation of HNE cells requires unknown soluble factors secreted from HNF cells.  相似文献   
124.
Progesterone is a mammalian gonadal hormone. In the current study, we identified and quantified progesterone in a range of higher plants by using GC-MS and examined its effects on the vegetative growth of plants. The growth of Arabidopsis (Arabidopsis thaliana) seedlings was promoted by progesterone at low concentrations but suppressed at higher concentrations under both light and dark growth conditions. The growth of the gibberellin-deficient mutant lh of pea (Pisum sativum) was also promoted by progesterone. An earlier study demonstrated that progesterone binds to MEMBRANE STEROID BINDING PROTEIN 1 (MSBP1) of Arabidopsis. In this work, we cloned the homologous genes of Arabidopsis, MSBP2 and STEROID BINDING PROTEIN (SBP), as well as of rice (Oryza sativa), OsMSBP1, OsMSBP2 and OsSBP and examined their expression in plant tissues. All of these genes, except OsMSBP1, were expressed abundantly in plant tissues. The roles of progesterone in plant growth were also discussed.  相似文献   
125.
The members of the cyprinid subfamily Gobioninae, commonly called gudgeons, form one of the most well-established assemblages in the family Cyprinidae. The subfamily is a species-rich group of fishes, these fishes display diverse life histories, appearances, and behavior. The phylogenetic relationships of Gobioninae are examined using sequence data from four loci: cytochrome b, cytochrome c oxidase I, opsin, and recombination activating gene 1. This investigation produced a data matrix of 4114 bp for 162 taxa that was analyzed using parsimony, maximum likelihood, and Bayesian inference methods. The phylogenies our analyses recovered corroborate recent studies on the group. The subfamily Gobioninae is monophyletic and composed of three major lineages. We find evidence for a Hemibarbus-Squalidus group, and the tribes Gobionini and Sarcocheilichthyini, with the Hemibarbus-Squalidus group sister to a clade of Gobionini-Sarcocheilichthyini. The Hemibarbus-Squalidus group includes those two genera; the tribe Sarcocheilichthyini includes Coreius, Coreoleuciscus, Gnathopogon, Gobiocypris, Ladislavia, Paracanthobrama, Pseudorasbora, Pseudopungtungia, Pungtungia, Rhinogobio, and Sarcocheilichthys; the tribe Gobionini includes Abbottina, Biwia, Gobio, Gobiobotia, Huigobio, Microphysogobio, Platysmacheilus, Pseudogobio, Romanogobio, Saurogobio, and Xenophysogobio. The monotypic Acanthogobio is placed into the synonymy of Gobio. We tentatively assign Belligobio to the Hemibarbus-Squalidus group and Mesogobio to Gobionini; Paraleucogobio and Parasqualidus remain incertae sedis. Based on the topologies presented, the evolution of swim bladder specializations, a distinctive feature among cyprinids, has occurred more than once within the subfamily.  相似文献   
126.
MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1−/− mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1−/− mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1−/− mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1−/− mice. Transplantation of MCP-1−/− bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1−/− mice increased lung metastasis. The primary tumors of MCP-1−/− mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1−/− mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment.  相似文献   
127.
The haloalkane dehalogenases are detoxifying enzymes that convert a broad range of halogenated substrates to the corresponding alcohols. Complete crystal structures of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), and complexes of LinB with 1,2-propanediol/1-bromopropane-2-ol and 2-bromo-2-propene-1-ol, products of debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, were determined from 1.8 A resolution X-ray diffraction data. Published structures of native LinB and its complex with 1,3-propanediol [Marek et al. (2000) Biochemistry 39, 14082-14086] were reexamined. The full and partial debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, conformed to the observed general trend that the sp(3)-hybridized carbon is the predominant electrophilic site for the S(N)2 bimolecular nucleophilic substitution in dehalogenation reaction. The 2-bromo-2-propene-1-ol product of 2,3-dibromopropene dehalogenation in crystal was positively identified by the gas chromatography-mass spectroscopy (GC-MS) technique. The 1,2-propanediol and 1-bromopropane-2-ol products of 1,2-dibromopropane dehalogenation in crystal were also supported by the GC-MS identification. Comparison of native LinB with its complexes showed high flexibility of residues 136-157, in particular, Asp146 and Glu147, from the cap domain helices alpha(4) and alpha(5)('). Those residues were shifted mainly in direction toward the ligand molecules in the complex structures. It seems the cap domain moves nearer to the core squeezing substrate into the active center closer to the catalytic triad. This also leads to slight contraction of the whole complex structures. The flexibility detected by crystallographic analysis is in remarkable agreement with flexibility observed by molecular dynamic simulations.  相似文献   
128.
Mast cells contain spleen-type prostaglandin D synthetase   总被引:2,自引:0,他引:2  
Prostaglandin D synthetase activity in the cytosol (100,000 x g, 1-h supernatant) fraction of peritoneal mast cells of adult rats (105.0 nmol/min/mg protein) was the highest among such activities in various rat tissues and cells. As judged by the absolute requirement for glutathione for the reaction (Km = 300 microM), the Km value for prostaglandin H2 (200 microM), and insensitivity of the activity to 1 mM 1-chloro-2,4-dinitrobenzene, the enzyme in mast cells was similar to rat spleen prostaglandin D synthetase and differed from rat brain prostaglandin D synthetase or glutathione S-transferase, all of which catalyze the isomerase reaction from prostaglandin H2 to prostaglandin D2. In immunotitration analyses, the activity in mast cells showed a titration curve exactly identical with that of the purified spleen-type enzyme and almost completely absorbed by an excess amount of antibody against this enzyme, but it remained unchanged after incubation with antibodies against the brain-type enzyme and glutathione S-transferase isozymes thus far purified. In Western blot after two-dimensional electrophoresis of crude extracts of mast cells, a single immunoreactive spot was observed with antibody against the spleen-type enzyme at the same position as that of the purified enzyme (Mr = 26,000, pI = 5.2). Furthermore, the immunoreactive protein obtained from mast cells showed the same peptide fingerprints as those of the purified spleen-type enzyme, after partial digestion with Staphylococcus aureus V8 protease or trypsin. In immunoperoxidase staining, the immunoreactivity of the spleen-type enzyme was found in the cytosol of tissue mast cells in various organs such as thymus, intestine, stomach, and skin of adult rats. These findings indicate that prostaglandin D2 is produced by the spleen-type synthetase in mast cells of various tissues.  相似文献   
129.
Chick cardiac membranes were affinity labelled by cross-linking to membrane-bound 125I-endothelin-1 with disuccinimidyl tartarate. SDS/PAGE and autoradiographic analysis of the 125I-endothelin-1-labelled material in the presence or absence of 2-mercaptoethanol revealed one major labelled band, corresponding to a molecular mass of 53 kDa, whose appearance was dose-dependently inhibited by the addition of unlabelled endothelin-1 (1-100 nM). Subtracting the molecular mass of 125I-endothelin-1 and disuccinimidyl tartarate, the binding protein appeared to have a molecular mass of 50 kDa. To investigate further the molecular properties of endothelin receptor, the 125I-endothelin-1-endothelin-receptor complex was solubilized from chick cardiac membranes using the detergent digitonin. Sucrose gradient sedimentation of the solubilized complex indicated a sedimentation coefficient of 13 S, whereas the complex of (+)-[3H]PN200-110, a dihydropyridine derivative, and dihydropyridine-sensitive Ca2+ channels sedimented at 22 S. A monoclonal antibody raised against dihydropyridine-sensitive Ca2+ channels from the chick brain did not immunoprecipitate the 125I-endothelin-1-endothelin-receptor complex. These data suggest that endothelin receptor is clearly distinct from dihydropyridine-sensitive Ca2+ channels and endothelin has its own specific 50-kDa receptor.  相似文献   
130.
In order to clarify the role of micro-organisms in the carbon cycle of the boreal forest ecosystem, the vertical distribution of soil carbon, soil microbial biomass and respiratory activity was studied in a black spruce forest near Candle Lake in Saskatchewan, Canada. The total amount of carbon contained in moss and soil layers (to the depth of 50cm beneath the mineral soil surface) was 7.2kgm–2, about 47% of which was in the L and FH horizons of the soil. Soil microbial biomass per dry weight of soil was largest in the L horizon, while the biomass per ground area was largest in the FH horizon. Soil respiration rate, measured using a portable infrared gas analyzer, was highest in the FH horizon, exceeding 50% of the total soil respiration. Low but significant CO2 emission was detected even in deeper soil horizon (E horizon). We also examined the respiration rate of cut roots and the effect of root excision on respiration. The contribution of root respiration to total soil respiration, calculated from root biomass and respiration rate of cut roots, was about 54%. The amount of carbon evolved through microbial respiration during the snow-free season (June–October) was estimated as 221gCm–2. Micro-organisms in the L horizon showed high respiratory activity as compared with those in deeper soil horizons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号