首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   18篇
  307篇
  2023年   3篇
  2022年   6篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   8篇
  2017年   4篇
  2016年   10篇
  2015年   12篇
  2014年   19篇
  2013年   22篇
  2012年   26篇
  2011年   19篇
  2010年   22篇
  2009年   10篇
  2008年   20篇
  2007年   11篇
  2006年   8篇
  2005年   8篇
  2004年   13篇
  2003年   8篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   2篇
  1994年   4篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1975年   6篇
  1974年   2篇
  1973年   1篇
  1956年   1篇
排序方式: 共有307条查询结果,搜索用时 0 毫秒
71.
Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non–small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53β and p53γ, comprising exons 1 to 9β or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53β and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.  相似文献   
72.
73.
74.
75.
β-Lactamases are the major reason β-lactam resistance is seen in Gram-negative bacteria. To combat this resistance mechanism, β-lactamase inhibitors are currently being developed. Presently, there are only three that are in clinical use (clavulanate, sulbactam and tazobactam). In order to address this important medical need, we explored a new inhibition strategy that takes advantage of a long-lived inhibitory trans-enamine intermediate. SA2-13 was previously synthesized and shown to have a lower k react than tazobactam. We investigated here the importance of the carboxyl linker length and composition by synthesizing three analogs of SA2-13 (PSR-4-157, PSR-4-155, and PSR-3-226). All SA2-13 analogs yielded higher turnover numbers and k react compared to SA2-13. We next demonstrated using protein crystallography that increasing the linker length by one carbon allowed for better capture of a trans-enamine intermediate; in contrast, this trans-enamine intermediate did not occur when the C2 linker length was decreased by one carbon. If the linker was altered by both shortening it and changing the carboxyl moiety into a neutral amide moiety, the stable trans-enamine intermediate in wt SHV-1 did not form; this intermediate could only be observed when a deacylation deficient E166A variant was studied. We subsequently studied SA2-13 against a relatively recently discovered inhibitor-resistant (IR) variant of SHV-1, SHV K234R. Despite the alteration in the mechanism of resistance due to the K→R change in this variant, SA2-13 was effective at inhibiting this IR enzyme and formed a trans-enamine inhibitory intermediate similar to the intermediate seen in the wt SHV-1 structure. Taken together, our data reveals that the C2 side chain linker length and composition profoundly affect the formation of the trans-enamine intermediate of penam sulfones. We also show that the design of SA2-13 derivatives offers promise against IR SHV β-lactamases that possess the K234R substitution.  相似文献   
76.
Prion-induced diseases are a global health concern. The lack of effective therapy and 100 % mortality rates for such diseases have made the prion protein an important target for drug discovery. Previous NMR experimental work revealed that thiamine and its derivatives bind the prion protein in a pocket near the N-terminal loop of helix 1, and conserved intermolecular interactions were noted between thiamine and other thiamine-binding proteins. Furthermore, water-mediated interactions were observed in all of the X-ray crystallographic structures of thiamine-binding proteins, but were not observed in the thiamine–prion NMR study. To better understand the potential role of water in thiamine–prion binding, a docking study was employed using structural X-ray solvent. Before energy minimization, docked thiamine assumed a “V” shape similar to some of the known thiamine-dependent proteins. Following minimization with NMR-derived restraints, the “F” conformation was observed. Our findings confirmed that water is involved in ligand stabilization and phosphate group interaction. The resulting refined structure of thiamine bound to the prion protein allowed the 4-aminopyrimidine ring of thiamine to π-stack with Tyr150, and facilitated hydrogen bonding between Asp147 and the amino group of 4-aminopyrimidine. Investigation of the π-stacking interaction through mutation of the tyrosine residue further revealed its importance in ligand placement. The resulting refined structure is in good agreement with previous experimental restraints, and is consistent with the pharmacophore model of thiamine-binding proteins.  相似文献   
77.
A series of novel 4-Benzyl-1,3-thiazole derivatives was synthesized by applying analogue-based drug design approach and they were screened for anti-inflammatory activity. Darbufelone (CI 1004) a dual COX/LOX inhibitor, served as a lead molecule for designing a molecular scaffold. The derivatives with the 1,3 thiazole molecular scaffold bearing a side chain at position-2 resembling that of Romazarit (Ro-31-3948) were synthesized. The substitution at the second position of thiazole scaffold consisted of either carbalkoxy amino or aryl amino side chain. The introduction of an NH linker at the second position was the bioisoteric approach to impart the metabolic stability to the carbalkoxy side chains in designed molecules so as to avoid the likelihood of generating toxic moieties, like in Romazarit, which was withdrawn due to its toxicity profile. An important outcome of this study is the optimization of the substitution at the second position of the thiazole scaffold in eliciting better biological activity. The biological activity exhibited by the two designed series were in the order of carbalkoxy amino series > phenyl amino series. Molecule RS31 had emerged to be best compound in the whole series, having the side chain -NH-(C = O)O-R which resemble to Romazerit with 1,3 thiazole scaffold and substituted phenyl carbonyl group at fifth position derived from the retro-analysis of Darbufelone. This novel three-point pharmacophore, which is necessarily evolved from a lead-based drug design strategy, has opened up new avenues in designing of molecules acting on more than one rate-limiting step along the inflammatory cascade.  相似文献   
78.
Neurofilaments are essential cytoskeletal filaments that impart mechanical stability to axons. They are mostly assembled from three neurofilament proteins that form the core of the filament and its sidearms. Adjacent neurofilaments interact with each other through their apposing sidearms and attain unique conformations depending on the ionic condition, phosphorylation state, and interfilament separations. To understand the conformational properties of apposing sidearms under various conditions and gain insight into interfilament interactions, we performed Monte Carlo simulations of neurofilament pairs. We employed a sequence-based coarse-grained model of apposing NF sidearms that are end-tethered to cylindrical geometries according to the stoichiometry of the three neurofilament subunits. Monte Carlo simulations were conducted under different conditions such as phosphorylation state, ionic condition, and interfilament separations. Under salt-free conditions, apposing sidearms are found to adopt mutually excluding stretched but bent away conformations that are reminiscent of a repulsive type of interaction. Under physiological conditions, apposing sidearms are found to be in a coiled conformation, suggesting a short-range steric repulsive type of interaction. Increased sidearm mutual interpenetration and a simultaneous decrease in the individual brush heights were observed as the interfilament separation was reduced from 60 to 40 nm. The observed conformations suggest entropic interaction as a likely mechanism for sidearm-mediated interfilament interactions under physiological conditions.  相似文献   
79.
The vasotocin receptor family is homologous to the mammalian vasopressin G-protein coupled receptor (GPCR) family. The vasotocin receptor 2 (VT2R) and 4 (VT4R) have recently been shown to play important role(s) in the neuroendocrine regulation of stress in birds. A homology-based structural model of VT4R of the domestic chicken, Gallus gallus, was built using the sophisticated SYBYL-X suite. The structure of VT4R built with and without extra- and intracellular unstructured loops showed a seven-helix transmembrane domain, which is a characteristic feature of GPCRs. Several agonists and antagonists were screened by molecular docking to map their potential binding sites on the structure of VT4R. Interestingly, the presence of the N-terminal, intracellular and extracellular loops and C-terminal amino acid sequences emerging from the transmembrane domains during molecular docking appeared to influence the binding interface of the peptide agonists and peptide/non-peptide antagonists on the VT4R. The presence of unstructured loops, however, did not affect the relative binding affinity ranking of the peptide antagonists to VT4R. In general, the natural ligand, arginine vasotocin and the peptide/non-peptide antagonists were observed to be more deeply buried in the receptor. Results of in vitro inhibition experiments, using cultured anterior pituitary cells, showed excellent agreement with the binding affinity of the antagonists predicted by molecular docking. The results of this study provide valuable clues for the rational design of novel pharmaceutical compounds capable of blocking or attenuating the stress response.  相似文献   
80.
In order to evaluate the importance of a hydrogen-bond donating substituent in the design of β-lactamase inhibitors, a series of C6-substituted penicillin sulfones, lacking a C2′ substituent, and having an sp3 hybridized C6, was prepared and evaluated against a representative classes A and C β-lactamases. It was found that a C6 hydrogen-bond donor is necessary for good inhibitory activity, but that this feature alone is not sufficient in this series of C6β-substituted penicillin sulfones. Other factors which may impact the potency of the inhibitor include the steric bulk of the C6 substituent (e.g., methicillin sulfone) which may hinder recognition in the class A β-lactamases, and also high similarity to the natural substrates (e.g., penicillin G sulfone) which may render the prospective inhibitor a good substrate of both classes of enzyme. The best inhibitors had non-directional hydrogen-bonding substituents, such as hydroxymethyl, which may allow sufficient conformational flexibility of the acyl-enzyme for abstraction of the C6 proton by E166 (class A), thus promoting isomerization to the β-aminoacrylate as a stabilized acyl-enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号