首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   10篇
  101篇
  2021年   1篇
  2018年   4篇
  2015年   9篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
21.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and linkage studies and a 3.8-cM region flanked by PYGM and D11S97 has been defined. The zinc finger in the MEN1 locus (ZFM1) gene, which has also been mapped to this region, represents a candidate gene for MEN1. The ZFM1 gene, which consists of 14 exons, encodes a 623-amino acid protein and exons 2, 8 and 12 encode the putative nuclear localisation signal, a zinc finger motif, and a proline-rich region, respectively. We have investigated these potentially functional regions for germ-line mutations by single-stranded conformational polymorphism (SSCP) analysis in 64 unrelated MEN1 patients. In addition, we performed DNA sequence analysis of all the 14 exons and 13 of the 26 exon-intron boundaries in four unrelated MEN1 patients. A 6-bp deletion that resulted in the loss of two proline residues at codons 479 and 480 in exon 12 was found in one MEN1 patient. However, this did not co-segregate with MEN1 in the family and represented a rare polymorphism. Analysis by SSCP, DNA sequencing, northern blotting, Southern blotting and pulsed field gel electrophoresis revealed no additional genetic abnormalities of ZFM1 in the other MEN1 patients. Thus, our results indicate that ZFM1 is excluded as a candidate gene for MEN1. Received: 29 October 1996 / Revised: 16 December 1996  相似文献   
22.
23.
Phospholipase C (PLC) enzymes are an important family of regulatory proteins involved in numerous cellular functions, primarily through hydrolysis of the polar head group from inositol-containing membrane phospholipids. U73122 (1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione), one of only a few small molecules reported to inhibit the activity of these enzymes, has been broadly applied as a pharmacological tool to implicate PLCs in diverse experimental phenotypes. The purpose of this study was to develop a better understanding of molecular interactions between U73122 and PLCs. Hence, the effects of U73122 on human PLCβ3 (hPLCβ3) were evaluated in a cell-free micellar system. Surprisingly, U73122 increased the activity of hPLCβ3 in a concentration- and time-dependent manner; up to an 8-fold increase in enzyme activity was observed with an EC50=13.6±5 μm. Activation of hPLCβ3 by U73122 required covalent modification of cysteines as evidenced by the observation that enzyme activation was attenuated by thiol-containing nucleophiles, l-cysteine and glutathione. Mass spectrometric analysis confirmed covalent reaction with U73122 at eight cysteines, although maximum activation was achieved without complete alkylation; the modified residues were identified by LC/MS/MS peptide sequencing. Interestingly, U73122 (10 μm) also activated hPLCγ1 (>10-fold) and hPLCβ2 (~2-fold); PLCδ1 was neither activated nor inhibited. Therefore, in contrast to its reported inhibitory potential, U73122 failed to inhibit several purified PLCs. Most of these PLCs were directly activated by U73122, and a simple mechanism for the activation is proposed. These results strongly suggest a need to re-evaluate the use of U73122 as a general inhibitor of PLC isozymes.  相似文献   
24.
OBJECTIVE--To assess quality of storage of vaccines in the community. DESIGN--Questionnaire survey of general practices and child health clinics, and monitoring of storage temperatures of selected refrigerators. SETTING--Central Manchester and Bradford health districts. SUBJECTS--45 general practices and five child health clinics, of which 40 (80%) responded. Eight practices were selected for refrigeration monitoring. MAIN OUTCOME MEASURES--Adherence to Department of Health guidelines for vaccine storage, temperature range to which vaccines were exposed over two weeks. RESULTS--Of the 40 respondents, only 16 were aware of the appropriate storage conditions for the vaccines; eight had minimum and maximum thermometers but only one of these was monitored daily. In six of the eight practices selected for monitoring of refrigeration temperatures the vaccines were exposed to either subzero temperatures (three fridges) or temperatures up to 16 degrees C (three). Two of these were specialised drug storage refrigerators with an incorporated thermostat and external temperature gauges. CONCLUSION--Vaccines were exposed to temperatures that may reduce their potency. Safe storage of vaccines in the clinics cannot be ensured without adhering to the recommended guidelines. Provision of adequate equipment and training for staff in maintaining the "cold chain" and the use and care of equipment are important components of a successful immunisation programme.  相似文献   
25.

Background

Neuronal ceroid lipofuscinoses type I and type II (NCL1 and NCL2) also known as Batten disease are the commonly observed neurodegenerative lysosomal storage disorder caused by mutations in the PPT1 and TPP1 genes respectively. Till date, nearly 76 mutations in PPT1 and approximately 140 mutations, including large deletion/duplications, in TPP1 genes have been reported in the literature. The present study includes 34 unrelated Indian patients (12 females and 22 males) having epilepsy, visual impairment, cerebral atrophy, and cerebellar atrophy.

Methods

The biochemical investigation involved measuring the palmitoyl protein thioesterase 1 and tripeptidy peptidase l enzyme activity from the leukocytes. Based on the biochemical analysis all patients were screened for variations in either PPT1 gene or TPP1 gene using bidirectional Sanger sequencing. In cases where Sanger sequencing results was uninformative Multiplex Ligation-dependent Probe Amplification technique was employed. The online tools performed the protein homology modeling and orthologous conservation of the novel variants.

Results

Out of 34 patients analyzed, the biochemical assay confirmed 12 patients with NCL1 and 22 patients with NCL2. Molecular analysis of PPT1 gene in NCL1 patients revealed three known mutations (p.Val181Met, p.Asn110Ser, and p.Trp186Ter) and four novel variants (p.Glu178Asnfs*13, p.Pro238Leu, p.Cys45Arg, and p.Val236Gly). In the case of NCL2 patients, the TPP1 gene analysis identified seven known mutations and eight novel variants. Overall these 15 variants comprised seven missense variants (p.Met345Leu, p.Arg339Trp, p.Arg339Gln, p.Arg206Cys, p.Asn286Ser, p.Arg152Ser, p.Tyr459Ser), four frameshift variants (p.Ser62Argfs*19, p.Ser153Profs*19, p.Phe230Serfs*28, p.Ile484Aspfs*7), three nonsense variants (p.Phe516*, p.Arg208*, p.Tyr157*) and one intronic variant (g.2023_2024insT). No large deletion/duplication was identified in three NCL1 patients where Sanger sequencing study was normal.

Conclusion

The given study reports 34 patients with Batten disease. In addition, the study contributes four novel variants to the spectrum of PPT1 gene mutations and eight novel variants to the TPP1 gene mutation data. The novel pathogenic variant p.Pro238Leu occurred most commonly in the NCL1 cohort while the occurrence of a known pathogenic mutation p.Arg206Cys dominated in the NCL2 cohort. This study provides an insight into the molecular pathology of NCL1 and NCL2 disease for Indian origin patients.
  相似文献   
26.
Metabolism of (+)-, (-)-, and (+/-)-trans-3,4-dihydroxy-3, 4-dihydrobenzo[c]phenanthrenes by liver microsomes from rats and mice and by a purified monooxygenase system reconstituted with cytochrome P-450c has been examined. Bay-region 3,4-diol 1,2-epoxides are minor metabolites of both enantiomers of the 3,4-dihydrodiol with liver microsomes from 3-methylcholanthrene-treated rats or with the reconstituted system (less than 10% of total metabolites). Microsomes from control and phenobarbital-treated rats and from control mice form higher percentages of these diol epoxides (13-36% of total metabolites). Microsomes from 3-methylcholanthrene-treated rats and cytochrome P-450c in the reconstituted system form exclusively the diol expoxide-1 diastereomer, in which the benzylic hydroxyl group and oxirane oxygen are cis to each other, from the (+)-(3S,4S)-dihydrodiol. The same enzymes selectively form the diol expoxide-2 diastereomer, with its oxirane oxygen and benzylic hydroxyl groups trans to each other, from the (-)-(3R,4R)-dihydrodiol (77% of the total diol epoxides). Liver microsomes from control rats show similar stereoselectivity whereas liver microsomes from phenobarbital-treated rats and from control mice are less stereoselective. Three bis-dihydrodiols and three phenolic dihydrodiols are also formed from the enantiomeric 3,4-dihydrodiols of benzo[c]phenanthrene. A single diastereomer of one of these bis-dihydrodiols with the newly introduced dihydrodiol group at the 7,8-position accounts for 79-88% of the total metabolites of the (-)-(3R,4R)-dihydrodiol formed by liver microsomes from 3-methylcholanthrene-treated rats or by the reconstituted system containing epoxide hydrolase. In contrast, the (+)-(3S,4S)-dihydrodiol is metabolized to two diastereomers of this bis-dihydrodiol, a third bis-dihydrodiol, and two phenolic dihydrodiols.  相似文献   
27.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and recombination studies, and a 0.5-Mb region, flanked by PYGM and D11S449, has been defined. In the course of constructing a contig, we have identified the location of the gene encoding the B56β subunit of protein phosphatase 2A (PP2A), which is involved in cell signal transduction pathways and thus represents a candidate gene for MEN1. We have searched for mutations in the PP2A-B56β coding region, together with the 5′ and 3′ untranslated regions in six MEN1 patients. DNA sequence abnormalities were not identified and thus the PP2A-B56β gene is excluded as the candidate gene for MEN1. However, our precise localisation of PP2A-B56β to this region of 11q13 may help in elucidating the basis for other disease genes mapping to this gene-rich region. Received: 17 April 1997 / Accepted: 22 April 1997  相似文献   
28.
Metabolism of 3H-labeled (+)-(S,S)- and (-)-(R,R)-1,2-dihydrodiols of triphenylene by rat liver microsomes and 11 purified isozymes of cytochrome P450 in a reconstituted monooxygenase system has been examined. Although both enantiomers were metabolized at comparable rates, the distribution of metabolites between phenolic dihydrodiols and bay-region, 1,2-diol 3,4-epoxide diastereomers varied substantially with the different systems. Treatment of rats with phenobarbital (PB) or 3-methylcholanthrene (MC) caused a slight reduction or less than a twofold increase, respectively, in the rate of total metabolism (per nanomole of cytochrome P450) of the enantiomeric dihydrodiols compared to microsomes from control rats. Among the 11 isozymes of cytochrome P450 tested, only cytochromes P450c (P450IA1) and P450d (P450IA2) had significant catalytic activity. With either enantiomer of triphenylene 1,2-dihydrodiol, both purified cytochrome P450c (P450IA1) and liver microsomes from MC-treated rats formed diol epoxides and phenolic dihydrodiols in approximately equal amounts. Purifed cytochrome P450d (P450IA2), however, formed bay-region diol epoxides and phenolic dihydrodiols in an 80:20 ratio. Interestingly, liver microsomes from control or PB-treated rats produced only diol epoxides and little or no phenolic dihydrodiols. The diol epoxide diastereomers differ in that the epoxide oxygen is either cis (diol epoxide-1) or trans (diol epoxide-2) to the benzylic 1-hydroxyl group. With either purified cytochromes P450 (isozymes c or d) or liver microsomes from MC-treated rats, diol epoxide-2 is favored over diol epoxide-1 by at least 4:1 when the (-)-enantiomer is the substrate, while diol epoxide-1 is favored by at least 5:1 when the (+)- enantiomer is the substrate. In contrast, with liver microsomes from control or PB-treated rats, formation of diol epoxide-1 relative to diol epoxide-2 was favored by at least 2:1 regardless of the substrate enantiomer metabolized. This is the first instance where the ratio of diol epoxide-1/diol epoxide-2 metabolites is independent of the dihydrodiol enantiomer metabolized. Experiments with antibodies indicate that a large percentage of the metabolism by microsomes from control and PB-treated rats is catalyzed by cytochrome P450p (P450IIIA1), resulting in the altered stereoselectivity of these microsomes compared to that of the liver microsomes from MC-treated rats.  相似文献   
29.
Earlier studies using affinity labeling reagents have suggested the existence of two nucleophilic groups at the active site of catechol-O-methyltransferase (S-adenosyl-L-methionine:catechol O-methyltransferase, EC 2.1.1.6). Both nucleophilic residues are critical for catalytic activity. In an effort to elucidate the nature of these residues and to further characterize the relationship between the chemical structure and the catalytic function of this enzyme, inactivation studies using N-ethylmaleimide were undertaken. Inactivation of the enzyme by N-ethylmaleimide under pseudo first-order conditions exhibited a non-linear relationship between the log of the fraction of enzyme activity remaining and preincubation time. Kinetic analysis of this inactivation process suggested the modification by N-ethylmaleimide of two residues at the active site of the enzyme, both crucial for catalytic activity. Detailed analysis of the inactivation process including substrate protection studies, pH profiles of inactivation, and incorporation studies using N-ethyl[2,3-14C2]maleimide provided additional evidence to support this conclusion.  相似文献   
30.
RNA interference (RNAi) is a natural mechanism for regulating gene expression, which exists in plants, invertebrates, and mammals. We investigated whether non-viral infusion of short interfering RNA (siRNA) by the intracerebroventricular route would enable a sequence-specific gene knockdown in the mouse brain and whether the knockdown translates into disease-relevant behavioral changes. Initially, we targeted enhanced green fluorescent protein (EGFP) in mice overexpressing EGFP. A selective knockdown of both EGFP protein and mRNA was observed throughout the brain, with lesser down-regulation in regions distal to the infusion site. We then targeted endogenous genes, encoding the dopamine (DAT) and serotonin transporters (SERT). DAT-siRNA infusion in adult mice produced a significant down-regulation of DAT mRNA and protein and elicited hyperlocomotion similar, but delayed, to that produced on infusion of GBR-12909, a potent and selective DAT inhibitor. Similarly, SERT-siRNA infusion resulted in significant knockdown of SERT mRNA and protein and elicited reduced immobility in the forced swim test similar to that obtained on infusion of citalopram, a very selective and potent SSRI. Application of this non-viral RNAi approach may accelerate target validation for neuropsychiatric disorders that involve a complex interplay of gene(s) from various brain regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号