首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   76篇
  833篇
  2022年   10篇
  2021年   10篇
  2020年   5篇
  2019年   11篇
  2018年   14篇
  2017年   9篇
  2016年   12篇
  2015年   27篇
  2014年   38篇
  2013年   36篇
  2012年   36篇
  2011年   38篇
  2010年   22篇
  2009年   27篇
  2008年   26篇
  2007年   30篇
  2006年   35篇
  2005年   28篇
  2004年   22篇
  2003年   19篇
  2002年   18篇
  2001年   22篇
  2000年   19篇
  1999年   15篇
  1998年   16篇
  1997年   11篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   8篇
  1992年   9篇
  1991年   10篇
  1990年   7篇
  1989年   11篇
  1988年   15篇
  1987年   11篇
  1986年   8篇
  1985年   5篇
  1984年   13篇
  1983年   9篇
  1982年   8篇
  1980年   15篇
  1979年   9篇
  1978年   5篇
  1976年   4篇
  1972年   5篇
  1967年   5篇
  1966年   8篇
  1965年   5篇
  1945年   4篇
排序方式: 共有833条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
105.
106.
107.
A naturally occurring feline thymic lymphosarcoma (T17) provided the unique observation of a T-cell antigen receptor beta-chain gene (v-tcr) transduced by a retrovirus. The primary tumor contained three classes of feline leukemia virus (FeLV) provirus, which have now been characterized in more detail as (i) v-tcr-containing recombinant proviruses, (ii) v-myc-containing recombinant proviruses, and (iii) apparently full-length helper FeLV proviruses. The two transductions appear to have been independent events, with distinct recombinational junctions and no sequence overlap in the host-derived inserts. The T17 tumor cell line releases large numbers of FeLV particles of low infectivity; all three genomes are encapsidated, but passage of FeLV-T17 on feline fibroblast and lymphoma cells led to selective loss of the recombinant viruses. The oncogenic potential of the T17 virus complex was, therefore, tested by infection of neonatal cats with virus harvested directly from the primary T17 tumor cell line. A single inoculation of FeLV-T17 caused persistent low-grade infection culminating in thymic lymphosarcoma and acute thymic atrophy, which was accelerated by coinfection with the weakly pathogenic FeLV subgroup A (FeLV-A)/Glasgow-1 helper. Molecularly cloned FeLV-tcr virus (T-31) rescued for replication by a weakly pathogenic FeLV-A/Glasgow-1 helper virus was similarly tested in vivo and induced thymic atrophy and thymic lymphosarcomas. Most FeLV-T17-induced tumors manifested either v-myc or an activated c-myc allele and had undergone rearrangement of endogenous T-cell antigen receptor beta-chain genes, supporting the proposition that the oncogenic effects of c-myc linked to the FeLV long terminal repeat are targeted to a specific window in T-cell differentiation. However, neither the FeLV-T17-induced tumors nor the T-31 + FeLV-A-induced tumors contained clonally represented v-tcr sequences. Only one of the FeLV-T17-induced tumors contained detectable v-tcr proviruses, at a low copy number. While v-tcr does not have a readily transmissible oncogenic function, a more restricted role is not excluded, perhaps involving antigenic peptide-major histocompatibility complex recognition by the T-cell receptor complex. Such a function could be obscured by the genetic diversity of the outbred domestic cat host.  相似文献   
108.
    
Binge drinking and alcohol abuse are common during adolescence and cause lasting pathology. Preclinical rodent studies using the adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2‐day on/2‐day off from postnatal day [P]25 to P55) model of human adolescent binge drinking report decreased basal forebrain cholinergic (ie, ChAT+) neurons that persist into adulthood (ie, P56‐P220). Recent studies link AIE‐induced neuroimmune activation to cholinergic pathology, but the underlying molecular mechanisms contributing to the persistent loss of basal forebrain ChAT+ neurons are unknown. We report here that the AIE‐induced loss of cholinergic neuron markers (ie, ChAT, TrkA, and p75NTR), cholinergic neuron shrinkage, and increased expression of the neuroimmune marker pNF‐κB p65 are restored by exercise exposure from P56 to P95 after AIE. Our data reveal that persistently reduced expression of cholinergic neuron markers following AIE is because of the loss of the cholinergic neuron phenotype most likely through an epigenetic mechanism involving DNA methylation and histone 3 lysine 9 dimethylation (H3K9me2). Adolescent intermittent ethanol caused a persistent increase in adult H3K9me2 and DNA methylation at promoter regions of Chat and H3K9me2 of Trka, which was restored by wheel running. Exercise also restored the AIE‐induced reversal learning deficits on the Morris water maze. Together, these data suggest that AIE‐induced adult neuroimmune signaling and cognitive deficits are linked to suppression of Chat and Trka gene expression through epigenetic mechanisms that can be restored by exercise. Exercise restoration of the persistent AIE‐induced phenotypic loss of cholinergic neurons via epigenetic modifications is novel mechanism of neuroplasticity.  相似文献   
109.
    
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   
110.
    
Sara E. Cannon  Simon D. Donner  Angela Liu  Pedro C. González Espinosa  Andrew H. Baird  Julia K. Baum  Andrew G. Bauman  Maria Beger  Cassandra E. Benkwitt  Matthew J. Birt  Yannick Chancerelle  Joshua E. Cinner  Nicole L. Crane  Vianney Denis  Martial Depczynski  Nur Fadli  Douglas Fenner  Christopher J. Fulton  Yimnang Golbuu  Nicholas A. J. Graham  James Guest  Hugo B. Harrison  Jean-Paul A. Hobbs  Andrew S. Hoey  Thomas H. Holmes  Peter Houk  Fraser A. Januchowski-Hartley  Jamaluddin Jompa  Chao-Yang Kuo  Gino Valentino Limmon  Yuting V. Lin  Timothy R. McClanahan  Dominic Muenzel  Michelle J. Paddack  Serge Planes  Morgan S. Pratchett  Ben Radford  James Davis Reimer  Zoe T. Richards  Claire L. Ross  John Rulmal Jr.  Brigitte Sommer  Gareth J. Williams  Shaun K. Wilson 《Global Change Biology》2023,29(12):3318-3330
Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号