首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2512篇
  免费   217篇
  国内免费   7篇
  2736篇
  2022年   19篇
  2021年   39篇
  2020年   19篇
  2019年   24篇
  2018年   39篇
  2017年   28篇
  2016年   58篇
  2015年   117篇
  2014年   126篇
  2013年   146篇
  2012年   216篇
  2011年   157篇
  2010年   103篇
  2009年   84篇
  2008年   121篇
  2007年   119篇
  2006年   130篇
  2005年   97篇
  2004年   100篇
  2003年   90篇
  2002年   67篇
  2001年   78篇
  2000年   62篇
  1999年   81篇
  1998年   38篇
  1997年   30篇
  1996年   13篇
  1995年   17篇
  1994年   21篇
  1993年   16篇
  1992年   35篇
  1991年   38篇
  1990年   33篇
  1989年   21篇
  1988年   23篇
  1987年   22篇
  1986年   29篇
  1985年   28篇
  1984年   13篇
  1983年   20篇
  1982年   22篇
  1981年   18篇
  1980年   16篇
  1979年   20篇
  1978年   18篇
  1976年   20篇
  1975年   17篇
  1974年   12篇
  1973年   15篇
  1972年   14篇
排序方式: 共有2736条查询结果,搜索用时 0 毫秒
961.
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.  相似文献   
962.
963.
964.
Scant information is available about the molecular basis of multiple HLA class I antigen-processing machinery defects in malignant cells, although this information contributes to our understanding of the molecular immunoescape mechanisms utilized by tumor cells and may suggest strategies to counteract them. In the present study we reveal a combination of IFN-γ-irreversible structural and epigenetic defects in HLA class I antigen-processing machinery in a recurrent melanoma metastasis after immunotherapy. These defects include loss of tapasin and one HLA haplotype as well as selective silencing of HLA-A3 gene responsiveness to IFN-γ. Tapasin loss is caused by a germ-line frameshift mutation in exon 3 (TAPBP684delA) along with a somatic loss of the other gene copy. Selective silencing of HLA-A3 gene and its IFN-γ responsiveness is associated with promoter CpG methylation nearby site-α and TATA box, reversible after DNA methyltransferase 1 depletion. This treatment combined with tapasin reconstitution and IFN-γ stimulation restored the highest level of HLA class I expression and its ability to elicit cytotoxic T cell responses. These results represent a novel tumor immune evasion mechanism through impairing multiple components at various levels in the HLA class I antigen presentation pathway. These findings may suggest a rational design of combinatorial cancer immunotherapy harnessing DNA demethylation and IFN-γ response.  相似文献   
965.
966.
About 8000 genes encode membrane proteins in the human genome. The information about their druggability will be very useful to facilitate drug discovery and development. The main problem, however, consists of limited structural and functional information about these proteins because they are difficult to produce biochemically and to study. In this paper we describe the strategy that combines Cell-free protein expression, NMR spectroscopy, and molecular DYnamics simulation (CNDY) techniques. Results of a pilot CNDY experiment provide us with a guiding light towards expedited identification of the hit compounds against a new uncharacterized membrane protein as a potentially druggable target. These hits can then be further characterized and optimized to develop the initial lead compound quicker. We illustrate such “omics” approach for drug discovery with the CNDY strategy applied to two example proteins: hypoxia-induced genes HIGD1A and HIGD1B.  相似文献   
967.
968.
Pattern‐triggered immunity (PTI) is broad spectrum and manipulation of PTI is believed to represent an attractive way to engineer plants with broad‐spectrum disease resistance. PTI is activated upon perception of microbe‐associated molecular patterns (MAMPs) by pattern‐recognition receptors (PRRs). We have recently demonstrated that the L‐type lectin receptor kinase‐VI.2 (LecRK‐VI.2) positively regulates Arabidopsis thaliana PTI. Here we show through in vitro pull‐down, bimolecular fluorescence complementation and co‐immunoprecipitation analyses that LecRK‐VI.2 associates with the PRR FLS2. We also demonstrated that LecRK‐VI.2 from the cruciferous plant Arabidopsis remains functional after interfamily transfer to the Solanaceous plant Nicotiana benthamiana. Wild tobacco plants ectopically expressing LecRK‐VI.2 were indeed more resistant to virulent hemi‐biotrophic and necrotrophic bacteria, but not to the fungal pathogen Botrytis cinerea suggesting that, as with Arabidopsis, the LecRK‐VI.2 protective effect in N. benthamiana is bacteria specific. Ectopic expression of LecRK‐VI.2 in N. benthamiana primed PTI‐mediated reactive oxygen species production, mitogen‐activated protein kinase (MAPK) activity, callose deposition and gene expression upon treatment with the MAMP flagellin. Our findings identified LecRK‐VI.2 as a member of the FLS2 receptor complex and suggest that heterologous expression of components of PRR complexes can be used as tools to engineer plant disease resistance to bacteria.  相似文献   
969.
The lipoxygenase isoform of 5-lipoxygenase (5-LOX) is reported to be overexpressed in human rheumatoid arthritis synovial tissue and involved in the progress of inflammatory arthritis. However, the detailed mechanism of how 5-lipoxygenase regulates the inflammatory response in arthritis synovial tissue is still unclear. The aim of this study was to investigate the involvement of lipoxygenase pathways in TNF-α-induced production of cytokines and chemokines. Human synovial fibroblasts from rheumatoid patients were used in this study. 5-LOX inhibitors and shRNA were used to examine the involvement of 5-LOX in TNF-α-induced cytokines and chemokines expression. The signaling pathways were examined by Western Blotting or immunofluorescence staining. The effect of 5-LOX inhibitor on TNF-α-induced chemokine expression and paw edema was also explored in vivo in C57BL/6 mice. Treatment with 5-LOX inhibitors significantly decreased TNF-α-induced pro-inflammatory mediators including interleukin-6 (IL-6) and monocyte chemo-attractant protein-1 (MCP-1) in human synovial fibroblasts. Knockdown of 5-LOX using shRNA exerted similar inhibitory effects. The abrogation of NF-κB activation was involved in the antagonizing effects of these inhibitors. Furthermore, 5-LOX inhibitor decreased TNF-α-induced up-regulation of serum MCP-1 level and paw edema in mouse model. Our results provide the evidence that the administration of 5-LOX inhibitors is able to ameliorate TNF-α-induced cytokine/chemokine release and paw edema, indicating that 5-LOX inhibitors may be developed for therapeutic treatment of inflammatory arthritis.  相似文献   
970.

Objective

Anemia is associated with high mortality and poor prognosis after acute coronary syndrome (ACS). Increased red cell distribution width (RDW) is a strong independent predictor for adverse outcomes in ACS. The common underlying mechanism for anemia and increased RDW value is iron deficiency. It is not clear whether serum iron deficiency without anemia affects left ventricular (LV) performance after primary angioplasty for acute myocardial infarction (AMI). We investigated the prognostic value of serum iron concentration on LV ejection fraction (EF) at 6 months and its relationship to thrombolysis in myocardial infarction (TIMI) risk score in post MI patients.

Methods

We recruited 55 patients who were scheduled to undergo primary coronary balloon angioplasty after AMI and 54 age- and sex-matched volunteers. Serum iron concentration and interleukin-6 levels were measured before primary angioplasty. LVEF was measured by echocardiography at baseline and after 6 months. TIMI risk score was calculated for risk stratification.

Results

Serum iron concentration was significantly lower in those in whom LVEF had not improved ≥10% from baseline (52.7±24.1 versus 80.8±50.8 µg/dl, P = 0.016) regardless of hemoglobin level, and was significantly lower in the AMI group than in the control group (62.5±37.7 versus 103.0±38.1 µg/dl, P<0.001). Trend analysis revealed that serum iron concentration decreased as TIMI risk score increased (P = 0.002). In addition, lower serum iron concentrations were associated with higher levels of inflammatory markers. Multiple linear regression showed that baseline serum iron concentration can predict LV systolic function 6 months after primary angioplasty for AMI even after adjusting for traditional prognostic factors.

Conclusion

Hypoferremia is not only a marker of inflammation but also a potential prognostic factor for LV systolic function after revascularization therapy for AMI, and may be a novel biomarker for therapeutic intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号