首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593311篇
  免费   57250篇
  国内免费   218篇
  2018年   6756篇
  2017年   6414篇
  2016年   8785篇
  2015年   11196篇
  2014年   13587篇
  2013年   18650篇
  2012年   22084篇
  2011年   22565篇
  2010年   15284篇
  2009年   13756篇
  2008年   19815篇
  2007年   20529篇
  2006年   19279篇
  2005年   18488篇
  2004年   18479篇
  2003年   17813篇
  2002年   17384篇
  2001年   22712篇
  2000年   22298篇
  1999年   18054篇
  1998年   6959篇
  1997年   6557篇
  1996年   6202篇
  1995年   5882篇
  1994年   5740篇
  1993年   5647篇
  1992年   14872篇
  1991年   14588篇
  1990年   14410篇
  1989年   14162篇
  1988年   13207篇
  1987年   12540篇
  1986年   11371篇
  1985年   11817篇
  1984年   9824篇
  1983年   8484篇
  1982年   6586篇
  1981年   5779篇
  1980年   5591篇
  1979年   9320篇
  1978年   7253篇
  1977年   6657篇
  1976年   6344篇
  1975年   6980篇
  1974年   7729篇
  1973年   7741篇
  1972年   6934篇
  1971年   6489篇
  1970年   5547篇
  1969年   5393篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
2.
3.
4.
5.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
6.
7.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   
8.
Based on its proven anabolic effects on bone in osteoporosis patients, recombinant parathyroid hormone (PTH1-34) has been evaluated as a potential therapy for skeletal repair. In animals, the effect of PTH1-34 has been investigated in various skeletal repair models such as fractures, allografting, spinal arthrodesis and distraction osteogenesis. These studies have demonstrated that intermittent PTH1-34 treatment enhances and accelerates the skeletal repair process via a number of mechanisms, which include effects on mesenchymal stem cells, angiogenesis, chondrogenesis, bone formation and resorption. Furthermore, PTH1-34 has been shown to enhance bone repair in challenged animal models of aging, inflammatory arthritis and glucocorticoid-induced bone loss. This pre-clinical success has led to off-label clinical use and a number of case reports documenting PTH1-34 treatment of delayed-unions and non-unions have been published. Although a recently completed phase 2 clinical trial of PTH1-34 treatment of patients with radius fracture has failed to achieve its primary outcome, largely because of effective healing in the placebo group, several secondary outcomes are statistically significant, highlighting important issues concerning the appropriate patient population for PTH1-34 therapy in skeletal repair. Here, we review our current knowledge of the effects of PTH1-34 therapy for bone healing, enumerate several critical unresolved issues (e.g., appropriate dosing regimen and indications) and discuss the long-term potential of this drug as an adjuvant for endogenous tissue engineering.  相似文献   
9.
10.
The phylogeny of the fungus gnat family Mycetophilidae (Diptera) is reconstructed with a focus on the species‐rich and taxonomically difficult subfamilies Gnoristinae and Mycomyinae. The multigene phylogenetic analyses are based on five nuclear (18S, 28S, CAD, MCS, ITS2) and four mitochondrial (12S, 16S, COI, CytB) gene markers. The analyses strongly support the monophyly of Mycetophilidae and the subfamilies Manotinae, Sciophilinae, Leiinae, and Mycomyinae, although Gnoristinae is paraphyletic with respect to Mycetophilinae. All the genera and groups of genera included are supported as monophyletic, except for Acomoptera Vockeroth, Boletina Staeger, Dziedzickia Johannsen, Ectrepesthoneura Enderlein, and Neoempheria Osten Sacken. Ancestral character state reconstructions were applied to two morphological features present in Gnoristinae and Mycomyinae (i.e. presence of setae on wing membrane and wing vein R4) in order to assess their evolution. The wing vein R4 appears as an unstable character, spread throughout different clades. A dated phylogeny of the family Mycetophilidae showed that most of the subfamilies of Mycetophilidae originated and diversified during the Cretaceous. The youngest subfamilies, originated in the Paleogene, appear to be Mycomyinae and Mycetophilinae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号