首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   17篇
  243篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   11篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   15篇
  2014年   16篇
  2013年   23篇
  2012年   31篇
  2011年   16篇
  2010年   10篇
  2009年   7篇
  2008年   11篇
  2007年   13篇
  2006年   14篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
排序方式: 共有243条查询结果,搜索用时 13 毫秒
61.
The cytokine MIF is involved in inflammation and cell proliferation via pathways initiated by its binding to the transmembrane receptor CD74. MIF also promotes AMPK activation with potential benefits for response to myocardial infarction and ischemia-reperfusion. Structure-based molecular design has led to the discovery of not only antagonists, but also the first agonists of MIF-CD74 binding. The compounds contain a triazole core that is readily assembled via Cu-catalyzed click chemistry. The agonist and antagonist behaviors were confirmed via study of MIF-dependent ERK1/2 phosphorylation in human fibroblasts.  相似文献   
62.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   
63.
Lithium-ion batteries (LIBs) are a key technology in decarbonizing the transportation and electricity sectors, yet the use of critical materials, such as cobalt, nickel, and lithium, lead to environmental and social impacts. Reusing, repurposing, and recycling mitigate battery impacts by extending their lifespan and reducing reliance on virgin materials. Innovation that reduces demand for these problematic materials and increases battery efficiency also reduces impacts. Two examples of this technological innovation include, (1) the development of energy dense cathode chemistry containing less cobalt, a material with high social and environmental impacts; and (2) the use of columnar silicon thin film anode, which results in increased energy density compared to the commonly used graphite anode. This research assesses whether these technological innovations change the currently understood waste hierarchy, which prioritizes reuse or repurposing prior to recycling. This is of interest because retired high-cobalt batteries could supply their constituent materials sooner if recycled immediately and be used in low-cobalt, higher-performing batteries. The assessment considers the life cycle environmental impacts of two end-of-life management routes for a high-cobalt LIB: first, recycling the battery immediately after the first use life to produce a new, and less material intensive battery, and second, repurposing the battery for a stationary storage application followed by recycling. Findings show that battery reuse reduces life cycle environmental impacts relative to immediate recycling. Thus, from an environmental perspective, the waste hierarchy holds, and steps to retain the batteries in their highest value use, such as through repurposing, should still be prioritized.  相似文献   
64.
Amino Acids - The cysteine- perfluoroarene SNAr reaction allows for the sequence-specific attachment of dyes and affinity tags to peptides and proteins. However, while many methods exist for the...  相似文献   
65.
Carbonic anhydrase is a valuable and efficient catalyst for CO2 hydration. Most often the free enzyme is employed which complicates catalyst recycling, and can increase cost due to the need for protein purification. Immobilization of the enzyme may address these shortcomings. Here we report the development of whole‐cell biocatalysts for CO2 hydration via periplasmic expression of two forms of carbonic anhydrase in Escherichia coli using two different targeting sequences. The enzymatic turnover numbers (kcat) and catalytic efficiencies (kcat/KM) were decreased by an order of magnitude as compared to the free soluble enzyme, indicating the introduction of transport limitations. However, the thermal stabilities were improved for most configurations (>88% activity retention up to 95°C for three of four whole‐cell biocatalysts), operational stabilities were more than satisfactory (100% retention after 24 h of use for all four whole‐cell biocatalysts), and CO2 hydration was significantly enhanced relative to the uncatalyzed reaction (~50–70% increase in CaCO3 precipitate formed). A significant advantage of the whole‐cell approach is that protein purification is no longer necessary, and the cells can be easily separated and recycled in future applications including biofuel production, biosensors, and carbon capture and storage. Biotechnol. Bioeng. 2013; 110: 1865–1873. © 2013 Wiley Periodicals, Inc.  相似文献   
66.
67.
Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non–small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53β and p53γ, comprising exons 1 to 9β or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53β and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.  相似文献   
68.
69.
The food and agriculture sectors contribute significantly to climate change, but are also particularly vulnerable to its effects. Industrial ecology has robustly addressed these sectors’ contributions to climate change, but not their vulnerability to climate change. Climate change vulnerability must be addressed through development of climate change adaptation and resiliency strategies. However, there is a fundamental tension between the primary objectives of industrial ecology (efficiency, cyclic flows, and pollution prevention) and what is needed for climate change adaptation and resiliency. We develop here two potential ways through which the field can overcome (or work within) this tension and combine the tools and methods of industrial ecology with the science and process of climate change adaptation. The first layers industrial ecology tools on top of climate change adaptation strategies, allowing one to, for example, compare the environmental impacts of different adaptation strategies. The other embeds climate change adaptation and resiliency within industrial ecology tools, for example, by redefining the functional unit in life cycle assessment (LCA) to include functions of resiliency. In both, industrial ecology plays a somewhat narrow role, informing climate change adaptation and resilience decision‐making by providing quantitative indicators of environmental performance. This role for industrial ecology is important given the significant contributions and potential for mitigation of greenhouse gas emissions from food and agriculture. However, it suggests that industrial ecology's role in climate adaptation will be as an evaluator of adaptation strategies, rather than an originator.  相似文献   
70.
ART4 (CD297) is a member of the family of toxin-related ADP-ribosyltransferases (ARTs) and is the carrier of the Dombrock blood group alloantigens (Do). Two mouse monoclonal antibodies (MIMA-52 and MIMA-53), and two rat monoclonal antibodies (N0NI-B4 and NONI-B63) were obtained following immunization of mice with human Do/ART4-transfected cells and of rats with human Do/ART4 cDNA, respectively. All four mAbs recognize Do/ART4-transfected Jurkat cells but not untransfected cells by FACS analysis. Staining of Do/ART4-transfected cells by these mAbs was reduced following treatment of cells with PI-PLC, confirming that Do/ART4 is anchored in the cell membrane by linkage to glycosylphosphatidylinositol as predicted from its amino acid sequence. The four mAbs did not react with Gy(a-) (Dombrock null) erythrocytes but agglutinated other red blood cells. By flow cytometric analysis, all mAbs reacted prominently with erythrocytes, and weakly with peripheral blood monocytes and splenic macrophages, but not with B-lymphocytes or T-lymphocytes. The mAbs reacted weakly also with human umbilical vein endothelial cells and the basophilic leukemia KU-812. Immunohistology revealed staining of epithelia and endothelia on sections of tonsils. In FACS analyses NONI-B4 competed with MIMA-52 for binding to Do/ART4-transfected cells and erythrocytes, whereas NONI-B63 competed with MIMA-53. Neither of the mAbs reacted with mouse ART4-transfected cells, but NONI-B63 and MIMA-53 did react with a mouse/human ART4 chimera, indicating that the epitope recognized by these mAbs lies in the C-terminal half of the protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号