首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495235篇
  免费   48094篇
  国内免费   293篇
  543622篇
  2018年   5188篇
  2017年   4904篇
  2016年   6446篇
  2015年   7295篇
  2014年   9139篇
  2013年   12814篇
  2012年   14931篇
  2011年   15469篇
  2010年   10481篇
  2009年   9620篇
  2008年   13762篇
  2007年   14232篇
  2006年   13739篇
  2005年   12996篇
  2004年   12912篇
  2003年   12531篇
  2002年   12386篇
  2001年   24933篇
  2000年   24978篇
  1999年   19229篇
  1998年   5748篇
  1997年   5902篇
  1996年   5472篇
  1995年   4973篇
  1994年   4909篇
  1993年   4926篇
  1992年   15120篇
  1991年   15178篇
  1990年   14713篇
  1989年   14511篇
  1988年   13481篇
  1987年   12624篇
  1986年   11474篇
  1985年   11516篇
  1984年   9107篇
  1983年   7777篇
  1982年   5422篇
  1981年   4753篇
  1980年   4603篇
  1979年   8349篇
  1978年   6456篇
  1977年   5868篇
  1976年   5445篇
  1975年   6334篇
  1974年   6797篇
  1973年   6664篇
  1972年   5953篇
  1971年   5557篇
  1970年   4840篇
  1969年   4702篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
4.
5.
6.
Comparison of bone marrow extracellular matrices.   总被引:1,自引:0,他引:1  
We have compared the structure and composition of adult and fetal bovine bone marrow extracellular matrices. In contrast to fetal bone marrow, adult bone marrow has more oval fenestration and accumulation of adipocytes as well as lower protein content. These differences could be due to remodeling of bone marrow tissue as it develops. Zymogram analysis of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) activities showed that fetal, but not adult bone marrow extract contained a 96-kDa MMP and TIMP-1 and -2. These activities may contribute to the structural differences between adult and fetal bone marrow tissues.  相似文献   
7.
Random amplified polymorphic DNA (RAPD) analysis was used tostudy variation among and within selectedIxora (Rubiaceae) populationsand mutants. Six populations of I. congesta yielded identicalbanding patterns suggesting genetic uniformity of this species.However, six populations of I. coccinea varieties (three red-flowered,two yellow-flowered and one red-flowered wild-type) exhibitedinfraspecific differences in RAPD profiles. Small and largeleaves of an atavistic mutant cultivar of I. coccinea were alsosubjected to RAPD analysis. An extra band was amplified in thelarge leaves that was absent in small leaves, suggesting thatthe phenotypic alteration in this taxon is due to genetic mutationrather than epigenetic changes. Similarly, an extra band wasdetected in the white sectors of I. Variegated compared to thegreen sectors, suggesting that the shoot apical meristems ofthis cultivar exist as a genetic chimera. DNA gel blot hybridizationwas performed to confirm the specificities of selected bands.Our study indicates that differences among individuals of variouspopulations and mutants may be detected using RAPD markers.Copyright 1999 Annals of Botany Company Ixora L., variegated variety, RAPD fingerprinting, DNA gel blot, intraspecific genetic similarity, atavistic mutant.  相似文献   
8.
9.
In a recent study, we demonstrated that the conversion of carboxyl residues in the C-termini of tubulin to neutral amides with glycine ethyl ester enhanced the ability of the protein to assemble into microtubules and decreased its interaction with microtubule-associated proteins (MAPs). In this work, we investigated the effects of carboxyl modification on the dynamic behavior of microtubules at polymer mass steady state. After steady state, microtubules assembled from unmodified tubulin were sheared, and the mean polymer lengths decreased to 5 microns and then increased to 29 microns within 130 min. In contrast, lengths of sheared microtubules polymerized from tubulin containing 23 modified carboxyl groups increased by only 2-fold. Stabilization of polymer lengths was also observed directly by video-enhanced light microscopy of microtubules grown off of axonemes. Rapid shortening was seen in microtubules composed of unmodified but not modified tubulin. Further evidence for the less dynamic behavior of microtubules as a result of carboxyl modification was obtained from kinetic studies of the elongation phase during assembly which showed a 3-fold lower off-rate constant, k-, for modified microtubules. Another effect of the modification was a 12-fold reduction in the steady-state rate constant for GTP hydrolysis (165 s-1 for unmodified and 14 s-1 for modified). These results suggest that reduction of the negative charges in the C-termini by modification of the acidic residues stabilizes microtubules against depolymerization. MAPs may stabilize microtubules in an analogous manner.  相似文献   
10.
Human factor VIII procoagulant protein (factor VIII) was purified using a modification of our previously described method, in which Sephacryl S-400 elution, rather than QAE-cellulose chromatography, served as the final purification step. The protein had a specific activity of more than 2500 U/mg and consisted of a single polypeptide (Mr 100 000) when analyzed by SDS-polyacrylamide gel electrophoresis. Factor VIII was shown to be a glycoprotein by staining with periodic acid-Schiff's reagent following electrophoresis. Treatment of factor VIII with a mixture of exo- and endoglycosidases caused a reduction by about 50% in the intensity of periodic acid-Schiff staining, as determined by scanning densitometry, and an increase in electrophoretic mobility (equivalent to a new Mr 95 000). Removal of this portion of the total carbohydrate had no significant effect on factor VIII clotting activity or on thrombin potentiation of clotting activity. The in vivo survival curves of a native and sugar-depleted 125I-labeled factor VIII both showed similar patterns of initial rapid decay to 60 and 40% activity, respectively, followed by a one-half decay time of 4 h for both. These results suggest that the carbohydrate portion of human factor VIII does not contribute significantly to either clotting function in vitro or to biological turnover in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号