首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5′-R and 5′-S diastereoisomers of 8,5′-cyclo-2′-deoxyadenosine (cdA) and 8,5′-cyclo-2′-deoxyguanosine (cdG) containing a base-sugar covalent bond are formed by hydroxyl radicals. R-cdA and S-cdA are repaired by nucleotide excision repair (NER) in mammalian cellular extracts. Here, we have examined seven purified base excision repair enzymes for their ability to repair S-cdG or S-cdA. We could not detect either excision or binding of these enzymes on duplex oligonucleotide substrates containing these lesions. However, both lesions were repaired by HeLa cell extracts. Dual incisions by human NER on a 136-mer duplex generated 24–32 bp fragments. The time course of dual incisions were measured in comparison to cis-anti-B[a]P-N2-dG, an excellent substrate for human NER, which showed that cis-anti-B[a]P-N2-dG was repaired more efficiently than S-cdG, which, in turn, was repaired more efficiently than S-cdA. When NER efficiency of S-cdG with different complementary bases was investigated, the wobble pair S-cdG·dT was excised more efficiently than the S-cdG·dC pair that maintains nearly normal Watson-Crick base pairing. But S-cdG·dA mispair with no hydrogen bonds was excised less efficiently than the S-cdG·dC pair. Similar pattern was noted for S-cdA. The S-cdA·dC mispair was excised much more efficiently than the S-cdA·dT pair, whereas the S-cdA·dA pair was excised less efficiently. This result adds to complexity of human NER, which discriminates the damaged base pairs on the basis of multiple criteria.  相似文献   

2.
Biomarkers of oxidatively induced DNA damage are of great interest and can potentially be used for the early detection of disease, monitoring the progression of disease and determining the efficacy of therapy. The present work deals with the measurement in human urine of (5′R)-8,5′-cyclo-2′-deoxyadenosine (R-cdA) and (5′S)-8,5′-cyclo-2′-deoxyadenosine (S-cdA). These modified nucleosides had hitherto not been considered or investigated to be present in urine as possible biomarkers of oxidatively induced DNA damage. Urine samples were collected from volunteers, purified and analyzed by LC-MS/MS with isotope-dilution. R-cdA and S-cdA were detected in urine and quantified. Creatinine levels were also measured. In addition, we measured 8-hydroxy-2′-deoxyguanosine that is commonly used as a biomarker. This study shows, for the first time, that R-cdA and S-cdA exist in human urine and can be identified and quantified by LC-MS/MS. We propose that R-cdA and S-cdA may be well-suited biomarkers for disease processes such as carcinogenesis.  相似文献   

3.
5′-Methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH) are important metabolites in all living organisms. Two similar nucleosidases for hydrolyzing MTA in Arabidopsis thaliana (AtMTAN1 and AtMTAN2) exist, but only AtMTAN2 shows markedly broad substrate specificity for hydrolysis of SAH. To examine the biochemical characteristics of AtMTAN2, it was over-expressed in Escherichia coli and purified to homogeneity. Spectroscopic assays confirm AtMTAN2 catalyzes MTA as well as SAH hydrolysis, compared to AtMTAN1 which only hydrolyzes MTA. In addition, crystal structure of the AtMTAN2 enzyme in complex with, adenine was determined at 2.9 Å resolution. Finally, a structural comparison of AtMTAN2 performed with previously determined structures of AtMTAN1 and an E. coli homolog provides clues for the substrate specificity of MTA nucleosidases in A. thaliana.  相似文献   

4.

Background

(5R?) and (5S?) diastereomers of 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd) are major oxidation products of 2′-deoxycytidine and thymidine respectively. If not repaired, when present in cellular DNA, these base lesions may be processed by DNA polymerases that induce mutagenic and cell lethality processes.

Methods

Synthetic oligonucleotides that contained a unique 5-hydroxyhydantoin (5-OH-Hyd) or 5-hydroxy-5-methylhydantoin (5-OH-5-Me-Hyd) nucleobase were used as probes for repair studies involving several E. coli, yeast and human purified DNA N-glycosylases. Enzymatic reaction mixtures were analyzed by denaturing polyacrylamide gel electrophoresis after radiolabeling of DNA oligomers or by MALDI-TOF mass spectrometry measurements.

Results

In vitro DNA excision experiments carried out with endo III, endo VIII, Fpg, Ntg1 and Ntg2, show that both base lesions are substrates for these DNA N-glycosylases. The yeast and human Ogg1 proteins (yOgg1 and hOgg1 respectively) and E. coli AlkA were unable to cleave the N-glycosidic bond of the 5-OH-Hyd and 5-OH-5-Me-Hyd lesions. Comparison of the kcat/Km ratio reveals that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than 5-OH-Hyd and 5-OH-5-Me-Hyd. The kinetic results obtained with endo III indicate that 5-OH-Hyd and 5-OH-5-Me-Hyd are much better substrates than 5-hydroxycytosine, a well known oxidized pyrimidine substrate for this DNA N-glycosylase.

Conclusions

The present study supports a biological relevance of the base excision repair processes toward the hydantoin lesions, while the removal by the Fpg and endo III proteins are effected at better or comparable rates to that of the removal of 8-oxoGua and 5-OH-Cyt, two established cellular substrates.

General significance

The study provides new insights into the substrate specificity of DNA N-glycosylases involved in the base excision repair of oxidized bases, together with complementary information on the biological role of hydantoin type lesions.  相似文献   

5.
Due to the better solubility of the 4,4′-substituted bipyridine ligand a series of 4,4′-bis(tert-butyl)-2,2′-bipyridinedichlorometal(II) complexes, [M(tbbpy)Cl2], with M = Cu, Ni, Zn, Pd, Pt was synthesised and characterised. The blue copper complex 4,4′-bis(tert-butyl)-2,2′-bipyridinedichlorocopper(II) was isolated in two different polymorphic forms, as prisms 1 with a solvent inclusion and solvent-free as needles 2. Both structures were determined by X-ray structure analysis. They crystallise in the monoclinic space group P21/c with four molecules in the unit cell, but with different unit cells and packing motifs. Whereas in the prisms 1, with the unit cell parameters a = 12.1613(12), b = 10.6363(7), c = 16.3074(15) Å, β = 94.446(8)°, the packing is dominated by intra- and intermolecular hydrogen bonds, in the needles 2, with a = 7.738(1), b = 18. 333(2), c = 13.291(3) Å, β = 97.512(15)°, only intramolecular hydrogen bonds appear and the complex molecules are arranged in columns which are stabilised by π-π-stacking interactions. In both complexes the copper has a tetrahedrally distorted coordination sphere. These copper complexes were also studied by EPR spectroscopy in solution, as frozen glass and diamagnetically diluted powder with the analogue [Pd(tbbpy)Cl2] as host lattice.  相似文献   

6.
Two isomers (R,S,R,S- and R,R,S,S-) of five coordinate complex [Cu(L)Cl]+ have been separated and characterised. These two isomers have significantly different spectrochemical and electrochemical properties. Absorption maximum of R,S,R,S-[Cu(L)Cl]+ shifts to longer wavelength and its reduction potential shifts to more positive direction comparing those of R,R,S,S-[Cu(L)Cl]+. R,S,R,S-[Cu(L)Cl]+ is significantly distorted to trigonal-bipyramidal structure, whereas R,R,S,S-[Cu(L)Cl]+ retains almost square-planar geometry. The average bond distance of Cu-N in basal plane of R,S,R,S-[Cu(L)Cl]+ is longer by 0.024 Å than that of R,R,S,S-[Cu(L)Cl]+, whereas the bond distance of Cu-Cl in former is shorter by 0.200 Å than that in latter. The isolated square-planar complexes of R,R,S,S- and R,S,R,S-[Cu(L)](ClO4)2 are converted to the R,R,S,S- and R,S,R,S-[Cu(L)Cl]+ by the addition of Cl in nitromethane solution with the rate constants, k=1.70 (±0.02) and 8.31 (±0.07) M−1 s−1, respectively.  相似文献   

7.
The occurrence of (R)-3′-O-β-d-glucopyranosylrosmarinic acid, rosmarinic acid and caffeic acid in two important South African medicinal plants is reported for the first time. (R)-3′-O-β-d-Glucopyranosylrosmarinic acid and rosmarinic acid were isolated and identified in several samples from three species of the genus Arctopus L. (sieketroos) and three species of the genus Alepidea F. Delaroche (ikhathazo), both recently shown to be members of the subfamily Saniculoideae of the family Apiaceae. The compounds occur in high concentrations (up to 15.3 mg of (R)-3′-O-β-d-glucopyranosylrosmarinic acid per g dry wt) in roots of Arctopus. Our results provide a rationale for the traditional uses of these plants, as the identified compounds are all known for their antioxidant activity, with rosmarinic acid further contributing to a wide range of biological activities. Furthermore, we confirm the idea that (R)-3′-O-β-d-glucopyranosylrosmarinic acid is a useful chemotaxonomic marker for the subfamily Saniculoideae.  相似文献   

8.
Three new ligands and their palladium(II) complexes of general formula [PdCl2(R2-S,S-eddp)] (R = n-propyl, n-butyl and n-pentyl) have been synthesized and characterized by microanalysis, infrared and 1H and 13C NMR spectroscopy. Antimicrobial activity of these ligands and complexes was tested by microdilution method and both minimal inhibitory and microbicidal concentration were determined. These tested complexes demonstrated the significant antifungal activity against pathogenic fungi Aspergillus flavus and Aspergillus fumigatus. On the other hand, these complexes demonstrated moderate antibacterial activity.  相似文献   

9.
Electron transfer reactions between optically-active RuII/III complexes incorporating (S)-/(R)-amino acids, and the two azurins, azurin-1 (az-1Cu) and azurin-2 (az-2Cu) isolated from Alcaligenes xylosoxidans GIFU 1051, have been studied to probe molecular recognition sites on the two azurins. The RuII/III complexes are K[RuII(L)(bpy)] and [RuIII(L)(bpy)], and have a tripodal ligand (L) derived from the (S)-/(R)-amino acids, which are in turn exchanged for other functional substituent groups, such as (S)-/(R)-phenylalanine, -leucine, -valine, -alanine, and -glutamic acid (L = (S)-/(R)-BCMPA, -BCMLE, -BCMVA, -BCMAL, and -BCMGA). In the oxidation reaction of az-1CuI promoted by the RuIII complexes, the kinetic parameters exhibited enantio- and stereo-selectivities, while the same reaction of az-2CuI was less enantio- and stereo-selective. These differences suggest that the processes of formation of the activated states are different for the two azurins. On the other hand, such a difference has not been observed for az-1 and az-2 with respect to the reduction reactions promoted by both azurins CuII by the RuII complexes within the experimental error. This suggests that the neutrality of the Ru complexes is important for precise molecular recognition of azurins. His117 has been proposed as the electron transfer site. The local structures in the vicinity of the His117 side chain in the two azurins, are essentially identical with the exception of the 43rd residue, Val43 and Ala43 for az-1 and az-2, respectively. Electron transfer reactions between RuIII complexes and a mutant azurin, V43A-az-1, were also carried out. Interestingly, the activation parameters estimated were very similar to those of az-2, indicating that the 43rd residue acts as the electron transfer site in azurins and provides rationalization for the different mechanisms of az-1 and az-2 in redox reactions.  相似文献   

10.
The heterocyclic aromatic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed by the grilled cooking of certain foods such as meats, poultry and fish. PhIP has been shown to induce tumours in the colon, prostate and mammary glands of rats and is regarded as a potential human dietary carcinogen. PhIP is metabolically activated via cytochrome P450 mediated oxidation to an N-hydroxylamino-PhIP intermediate that is subsequently converted to an ester by N-acetyltransferases or sulfotransferases and undergoes heterolytic cleavage to produce a PhIP-nitrenium ion, which reacts with DNA to form the N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP-C8-dG) adduct. Thus far, the detection and quantification of PhIP-DNA adducts has relied to a large extent on 32P-postlabelling methodologies. In order to expand the array of available techniques for the detection and improved quantification of PhIP-C8-dG adducts in DNA we have developed an online column-switching liquid chromatography (LC)–electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) selected reaction monitoring (SRM) method incorporating an isotopically [13C10]-labelled PhIP-C8-dG internal standard for the analysis of DNA enzymatically hydrolysed to 2′-deoxynucleosides. A dose-dependent increase was observed for PhIP-C8-dG adducts when salmon testis DNA was reacted with N-acetoxy-PhIP. Analysis of DNA samples isolated from colon tissue of mice treated by oral gavage daily for 5 days with 50 mg/kg body weight of PhIP resulted in the detection of an average level of 14.8 ± 3.7 PhIP-C8-dG adducts per 106 2′-deoxynucleosides. The method required 50 μg of hydrolysed animal DNA on column and the limit of detection for PhIP-C8-dG was 2.5 fmol (1.5 PhIP-C8-dG adducts per 108 2′-deoxynucleosides). In summary, the LC–ESI-MS/MS SRM method provides for the rapid automation of the sample clean up and a reduction in matrix components that would otherwise interfere with the mass spectrometric analysis, with sufficient sensitivity and precision to analyse DNA adducts in animals exposed to PhIP.  相似文献   

11.
Globin-coupled sensors are heme-binding signal transducers in Bacteria and Archaea in which an N-terminal globin controls the activity of a variable C-terminal domain. Here, we report that BpeGReg, a globin-coupled diguanylate cyclase from the whooping cough pathogen Bordetella pertussis, synthesizes the second messenger bis-(3′-5′)-cyclic diguanosine monophosphate (c-di-GMP) upon oxygen binding. Expression of BpeGReg in Salmonella typhimurium enhances biofilm formation, while knockout of the BpeGReg gene of B. pertussis results in decreased biofilm formation. These results represent the first identification a signal ligand for any diguanylate cyclase and provide definitive experimental evidence that a globin-coupled sensor regulates c-di-GMP synthesis and biofilm formation. We propose that the synthesis of c-di-GMP by globin sensors is a widespread phenomenon in bacteria.  相似文献   

12.
We investigated the in vivo effects of orally administered cariprazine (RGH-188; trans-N-{4-[2-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-ethyl]-cyclohexyl}-N′,N′-dimethyl-urea), a D3/D2 dopamine receptor partial agonist with ∼10-fold preference for the D3 receptor. Oral bioavailability of cariprazine at a dose of 1 mg/kg in rats was 52% with peak plasma concentrations of 91 ng/mL. Cariprazine 10 mg/kg had good blood-brain barrier penetration, with a brain/plasma AUC ratio of 7.6:1. In rats, cariprazine showed dose-dependent in vivo displacement of [3H](+)-PHNO, a dopamine D3 receptor-preferring radiotracer, in the D3 receptor-rich region of cerebellar lobules 9 and 10. Its potent inhibition of apomorphine-induced climbing in mice (ED50 = 0.27 mg/kg) was sustained for 8 h. Cariprazine blocked amphetamine-induced hyperactivity (ED50 = 0.12 mg/kg) and conditioned avoidance response (CAR) (ED50 = 0.84 mg/kg) in rats, and inhibited the locomotor-stimulating effects of the noncompetitive NMDA antagonists MK-801 (ED50 = 0.049 mg/kg) and phencyclidine (ED50 = 0.09 mg/kg) in mice and rats, respectively. It reduced novelty-induced motor activity of mice (ED50 = 0.11 mg/kg) and rats (ED50 = 0.18 mg/kg) with a maximal effect of 70% in both species. Cariprazine produced no catalepsy in rats at up to 100-fold dose of its CAR inhibitory ED50 value. Cariprazine 0.02-0.08 mg/kg significantly improved the learning performance of scopolamine-treated rats in a water-labyrinth learning paradigm. Though risperidone, olanzapine, and aripiprazole showed antipsychotic-like activity in many of these assays, they were less active against phencyclidine and more cataleptogenic than cariprazine, and had no significant effect in the learning task. The distinct in vivo profile of cariprazine may be due to its higher affinity and in vivo binding to D3 receptors versus currently marketed typical and atypical antipsychotics.  相似文献   

13.
The effects of non-nearest base sequences, beyond the nucleotides flanking a DNA lesion on either side, on nucleotide excision repair (NER) in extracts from human cells were investigated. We constructed two duplexes containing the same minor groove-aligned 10S (+)-trans-anti-B[a]P-N2-dG (G?) DNA adduct, derived from the environmental carcinogen benzo[a]pyrene (B[a]P): 5′-C-C-A-T-C-G?-C-T-A-C-C-3′ (CG?C-I), and 5′-C-A-C3-A4-C5-G?-C-A-C-A-C-3′ (CG?C-II). We used polyacrylamide gel electrophoresis to compare the extent of DNA bending, and molecular dynamics simulations to analyze the structural characteristics of these two DNA duplexes. The NER efficiencies are 1.6(± 0.2)-fold greater in the case of the CG?C-II than the CG?C-I sequence context in 135-mer duplexes. Gel electrophoresis and self-ligation circularization experiments revealed that the CG?C-II duplex is more bent than the CG?C-I duplex, while molecular dynamics simulations showed that the unique -C3-A4-C5- segment in the CG?C-II duplex plays a key role. The presence of a minor groove-positioned guanine amino group, the Watson-Crick partner to C3, acts as a wedge; facilitated by a highly deformable local -C3-A4- base step, this amino group allows the B[a]P ring system to produce a more enlarged minor groove in CG?C-II than in CG?C-I, as well as a local untwisting and enlarged and flexible Roll only in the CG?C-II sequence. These structural properties fit well with our earlier findings that in the case of the family of minor groove 10S (+)-trans-anti-B[a]P-N2-dG lesions, flexible bends and enlarged minor groove widths constitute NER recognition signals, and extend our understanding of sequence context effects on NER to the neighbors that are distant to the lesion.  相似文献   

14.
The pharmacological properties of (±)-2-(N-tert-butylamino)-3′-iodo-4′-azidopropiophenone [(±)-SADU-3-72], a photoreactive analog of bupropion (BP), were characterized at different muscle nicotinic acetylcholine receptors (AChRs) by functional and structural approaches. Ca2+ influx results indicate that (±)-SADU-3-72 is 17- and 6-fold more potent than BP in inhibiting human (h) embryonic (hα1β1γδ) and adult (hα1β1εδ) muscle AChRs, respectively. (±)-SADU-3-72 binds with high affinity to the [3H]TCP site within the resting or desensitized Torpedo AChR ion channel, whereas BP has higher affinity for desensitized AChRs. Molecular docking results indicate that both SADU-3-72 enantiomers interact with the valine (position 13′) and serine (position 6′) rings. However, an additional domain, between the outer (position 20′) and valine rings, is observed in Torpedo AChR ion channels. Our results indicate that the azido group of (±)-SADU-3-72 may enhance its interaction with polar groups and the formation of hydrogen bonds at AChRs, thus supporting the observed higher potency and affinity of (±)-SADU-3-72 compared to BP. Collectively our results are consistent with a model where BP/SADU-3-72 and TCP bind to overlapping sites within the lumen of muscle AChR ion channels. Based on these results, we believe that (±)-SADU-3-72 is a promising photoprobe for mapping the BP binding site, especially within the resting AChR ion channel.  相似文献   

15.
R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5 A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method.  相似文献   

16.
Ethyl (R)-2-hydroxy-4-phenylbutanoate [(R)-HPBE] is a versatile and important chiral intermediate for the synthesis of angiotensin-converting enzyme (ACE) inhibitors. Recombinant E. coli strain coexpressing a novel NADPH-dependent carbonyl reductase gene iolS and glucose dehydrogenase gene gdh from Bacillus subtilis showed excellent catalytic activity in (R)-HPBE production by asymmetric reduction. IolS exhibited high stereoselectivity (>98.5% ee) toward α-ketoesters substrates, whereas fluctuant ee values (53.2–99.5%) for β-ketoesters with different halogen substitution groups. Strategies including aqueous/organic biphasic system and substrate fed-batch were adopted to improve the biocatalytic process. In a 1-L aqueous/octanol biphasic reaction system, (R)-HPBE was produced in 99.5% ee with an exceptional catalyst yield (gproduct/gcatalyst) of 31.7 via bioreduction of ethyl 2-oxo-4-phenylbutyrate (OPBE) at 330 g/L.  相似文献   

17.
The binding affinity of the two substrate–water molecules to the water-oxidizing Mn4CaO5 catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S2 and S3 states by the exchange of bound 16O-substrate against 18O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf = 52 ± 8 s− 1 and ks = 1.9 ± 0.3 s− 1 in the S2 state, and kf = 42 ± 2 s− 1 and kslow = 1.2 ± 0.3 s− 1 in S3, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate–water site in the S2 state, which confirms beyond doubt that both substrate–water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S2 → S3 transition. Implications for recent models for water-oxidation are briefly discussed.  相似文献   

18.
An alternative route for haem b biosynthesis is operative in sulfate-reducing bacteria of the Desulfovibrio genus and in methanogenic Archaea. This pathway diverges from the canonical one at the level of uroporphyrinogen III and progresses via a distinct branch, where sirohaem acts as an intermediate precursor being converted into haem b by a set of novel enzymes, named the alternative haem biosynthetic proteins (Ahb). In this work, we report the biochemical characterisation of the Desulfovibrio vulgaris AhbD enzyme that catalyses the last step of the pathway. Mass spectrometry analysis showed that AhbD promotes the cleavage of S-adenosylmethionine (SAM) and converts iron-coproporphyrin III via two oxidative decarboxylations to yield haem b, methionine and the 5′-deoxyadenosyl radical. Electron paramagnetic resonance spectroscopy studies demonstrated that AhbD contains two [4Fe–4S]2 +/1 + centres and that binding of the substrates S-adenosylmethionine and iron-coproporphyrin III induces conformational modifications in both centres. Amino acid sequence comparisons indicated that D. vulgaris AhbD belongs to the radical SAM protein superfamily, with a GGE-like motif and two cysteine-rich sequences typical for ligation of SAM molecules and iron-sulfur clusters, respectively. A structural model of D. vulgaris AhbD with putative binding pockets for the iron-sulfur centres and the substrates SAM and iron-coproporphyrin III is discussed.  相似文献   

19.
Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the biosynthesis of (S)-lysine, an essential constituent of bacterial cell walls. Escherichia coli DHDPS is homotetrameric, and each monomer contains an N-terminal (β/α)8-barrel, responsible for catalysis and regulation, and three C-terminal α-helices, the function of which is unknown. This study investigated the C-terminal domain of E. coli DHDPS by characterising a C-terminal truncated DHDPS (DHDPS-H225∗). DHDPS-H225∗ was unable to complement an (S)-lysine auxotroph, and showed significantly reduced solubility, stability, and maximum catalytic activity (kcat = 1.20 ± 0.01 s−1), which was only 1.6% of wild type E. coli DHDPS (DHDPS-WT). The affinity of DHDPS-H225∗ for substrates and the feedback inhibitor, (S)-lysine, remained comparable to DHDPS-WT. These changes were accompanied by disruption in the quaternary structure, which has previously been shown to be essential for efficient catalysis in this enzyme.  相似文献   

20.
Spartium junceum L. (Leguminosae) is a perennial shrub, native to the Mediterranean region in southern Europe, widespread in all the Italian regions and, as a leguminous species, it has a high isoflavone content. An in vitro culture protocol was developed for this species starting from stem nodal sections of in vivo plants, and isoflavone components of the in vitro cultured tissues were studied by means of High Performance Liquid Chromatography (HPLC) analytical techniques. Two main isoflavones were detected in the S. junceum tissues during the in vitro propagation phases: Genistein (4′,5,7-Trihydroxyisoflavone), already reported in this species, and its methylated form 4′,5,7-Trimethoxyisoflavone, detected for the first time in this plant species (0.750 ± 0.02 mg g−1 dry tissue). The presence of both of these compounds in S. junceum tissues was consistently detected during the in vitro multiplication phase. The absence of the methylated form within plant tissues in the early phases of the in vitro adventitious root formation was correlated with its negative effect displayed on root induction and initiation phases, while its presence in the final “root manifestation” phase influenced positively the rooting process. The unmethylated form, although detectable in tissues in the precocious rooting phases, was no longer present in the final rooting phase. Its effect on rooting, however, proved always to be beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号