首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CTLA-4 blockade enhances the CTL responses to the p53 self-tumor antigen   总被引:4,自引:0,他引:4  
p53 is an attractive target for cancer immunotherapy because it is overexpressed in a high proportion of many different types of tumors. However, it is also expressed in normal tissues and acts as a toleragen in vivo. Previously, detailed examination of the repertoire specific for the murine p53(261-269) epitope in conventional and p53-deficient mice demonstrated that because of expression of p53, the CD8(+) T cells that respond to this epitope express low-affinity TCRs. It has been reported that tolerance to tumor Ags can be broken by in vivo administration of anti-CTLA-4 mAb. With the goal of overriding tolerance and achieving optimal activation of p53-specific CTL, the current study has assessed the effect of anti-CTLA-4 mAb on the p53-specific repertoire. It was found that blockade of CTLA-4 engagement at the time of antigenic stimulation induced a vigorous amplification of the CTL responses to p53 as well as proportionate expansion of the memory T cell pool. This effect was dependent on the presence of CD4(+) T cell help and correlated with an enhancement of helper function. However, anti-CTLA-4 treatment did not enhance the avidity of the resultant p53-specific CTL populations and, therefore, could not reverse this important consequence of tolerance.  相似文献   

2.
Tetrameric MHC/peptide complexes are important tools for enumerating, phenotyping, and rapidly cloning Ag-specific T cells. It remains however unclear whether they can reliably distinguish between high and low avidity T cell clones. In this report, tetramers with mutated CD8 binding site selectively stain higher avidity human and murine CTL capable of recognizing physiological levels of Ag. Furthermore, we demonstrate that CD8 binding significantly enhances the avidity as well as the stability of interactions between CTL and cognate tetramers. The use of CD8-null tetramers to identify high avidity CTL provides a tool to compare vaccination strategies for their ability to enhance the frequency of high avidity CTL. Using this technique, we show that DNA priming and vaccinia boosting of HHD A2 transgenic mice fail to selectively expand large numbers of high avidity NY-ESO-1(157-165)-specific CTL, possibly due to the large amounts of antigenic peptide delivered by the vaccinia virus. Furthermore, development of a protocol for rapid identification of high avidity human and murine T cells using tetramers with impaired CD8 binding provides an opportunity not only to monitor expansion of high avidity T cell responses ex vivo, but also to sort high avidity CTL clones for adoptive T cell transfer therapy.  相似文献   

3.
In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.  相似文献   

4.
Specificity in the immune system is dictated and regulated by specific recognition of peptide/major histocompatibility complexes (MHC) by the T cell receptor (TCR). Such peptide/MHC complexes are a desirable target for novel approaches in immunotherapy because of their highly restricted fine specificity. Recently a potent anti-human p53 CD8(+) cytotoxic T lymphocyte (CTL) response has been developed in HLA-A2 transgenic mice after immunization with peptides corresponding to HLA-A2 motifs from human p53. An alpha/beta T-cell receptor was cloned from such CTL which exhibited a moderately high affinity to the human p53(149-157) peptide. In this report, we investigated the possibility of using a recombinant tumor-specific TCR for antigen-specific elimination of cells that express the specific MHC-peptide complex. To this end, we constructed a functional single-chain Fv fragment from the cloned TCR and fused it to a very potent cytotoxic molecule, a truncated form of Pseudomonas exotoxin A (PE38). The p53 TCR scFv-P38 fusion protein was generated by in vitro refolding from bacterially-expressed inclusion bodies, and was found to be functional by its ability to bind antigen-presenting cells (APC) which express the specific p53-derived peptide. Moreover, we have shown that the p53-specific TCR scFv-PE38 molecule specifically kills APC in a peptide-dependent manner. These results represent the first time that a TCR-derived recombinant single-chain Fv fragment has been used as a targeting moiety to deliver a cytotoxic effector molecule to cells and has been able to mediate the efficient killing of the particular cell population that expresses the specific MHC/peptide complex. Similarly to antibody-based targeting approaches, TCR with tumor cell specificity represent attractive candidates for generating new, very specific targeting moieties for various modes of cancer immunotherapy.  相似文献   

5.
Transaldolase (TAL) is expressed at selectively high levels in oligodendrocytes and targeted by autoreactive T cells of patients with multiple sclerosis (MS). Among 14 TAL peptides with predicted HLA-A2 binding, TAL 168-176 (LLFSFAQAV, TALpep) exhibited high affinity for HLA-A2. Prevalence of HLA-A2-restricted CD8+ T cells specific for TALpep was increased in PBMC of HLA-A2+ MS patients, as compared with HLA-A2- MS patients, HLA-A2+ other neurological disease patients, and HLA-A2+ healthy donors. HLA-A*0201/TALpep tetramers detected increased frequency of TAL-specific CD8+ T cells, and precursor frequency of TAL-specific IFN-gamma-producing T cells was increased in each of seven HLA-A2+ MS patients tested. Stimulation by TALpep or rTAL of PBMC from HLA-A2+ MS patients elicited killing of TALpep-pulsed HLA-A2-transfected HmyA2.1 lymphoma cells, but not HLA-A3-transfected control HmyA3.1 targets. Without peptide pulsing of targets, HLA-A2-transfected, but not control MO3.13 oligodendroglial cells, expressing high levels of endogenous TAL, were also killed by CD8+ CTL of MS patients, indicating recognition of endogenously processed TAL. TCR Vbeta repertoire analysis revealed use of the TCR Vbeta14 gene by T cell lines (TCL) of MS patients generated via stimulation by TAL- or TALpep-pulsed APCs. All TAL-specific TCL-binding HLA-A*0201/TALpep tetramers expressed TCR Vbeta14 on the cell surface. Moreover, Ab to TCR Vbeta14 abrogated cytotoxicity by HLA-A2-restricted TAL-specific TCL. Therefore, TAL-specific CTL may serve as a novel target for therapeutic intervention in patients with MS.  相似文献   

6.
The CD8 coreceptor enhances T cell function by stabilizing the TCR/peptide/MHC complex and/or increasing T cell avidity via interactions with the intracellular kinases Lck and LAT. We previously reported a CD4(+) T cell (TIL 1383I), which recognizes the tumor-associated Ag tyrosinase in the context of HLA-A2. To determine whether CD8 independent tumor cell recognition is a property of the TCR, we used retroviral transduction to express the TIL 1383I TCR in the CD8(-) murine lymphoma, 58 alpha(-)/beta(-). Immunofluorescent staining of TCR-transduced cells with human TCR V beta subfamily-specific and mouse CD3-specific Abs confirmed surface expression of the transferred TCR and coexpression of mouse CD3. Transduced effector cells secreted significant amounts of IL-2 following Ag presentation by tyrosinase peptide-pulsed T2 cells as well as stimulation with HLA-A2(+) melanoma lines compared with T2 cells alone or HLA-A2(-) melanoma cells. Further analysis of TCR-transduced clones demonstrated a correlation between T cell avidity and cell surface expression of the TCR. Therefore, the TIL 1383I TCR has sufficient affinity to mediate recognition of the physiologic levels of Ag expressed by tumor cells in the absence of CD8 expression.  相似文献   

7.
HER-2/neu oncoprotein is overexpressed in a variety of human tumors and is associated with aggressive disease. Immunogenic HER-2/neu CTL epitopes have been used as vaccines for the treatment of HER-2/neu positive malignancies with limited success. By applying prediction algorithms for MHC class I ligands and proteosomal cleavages, in this study, we describe the identification of HER-2/neu decamer LIAHNQVRQV spanning residues 85-94 (HER-2(10(85))). HER-2(10(85)) proved to bind with high affinity to HLA-A2.1 and was stable for 4 h in an off-kinetics assay. This peptide was immunogenic in HLA-A2.1 transgenic (HHD) mice inducing peptide-specific CTL, which responded to tumor cell lines of various origin coexpressing human HER-2/neu and HLA-A2.1. This demonstrates that HER-2(10(85)) is naturally processed from endogenous HER-2/neu. Five of sixteen HER-2/neu+ HLA-A2.1+ breast cancer patients analyzed had HER-2(10(85))-reactive T cells ranging from 0.35-0.70% of CD8+ T cells. Depletion of T regulatory cells from PBMC enabled the rapid expansion of HLA-A2.1/HER-2(10(85))pentamer+/CD8+ cells (PENT+/CD8+), whereas significantly lower numbers of CTL could be generated from unfractionated PBMC. HER-2(10(85))-specific human CTL recognized the HER-2/neu+ HLA-A2.1+ tumor cell line SKBR3.A2, as determined by IFN-gamma intracellular staining and in the high sensitivity CD107alpha degranulation assay. Finally, HER-2(10(85)) significantly prolonged the survival of HHD mice inoculated with the transplantable ALC.A2.1.HER tumor both in prophylactic and therapeutic settings. These data demonstrate that HER-2(10(85)) is an immunogenic peptide, capable of eliciting CD8-mediated responses in vitro and in vivo, providing the platform for further exploitation of HER-2(10(85)) as a possible target for anticancer immunotherapy.  相似文献   

8.
The p53 protein is markedly up-regulated in a high proportion of human malignancies. Using an HLA-A2 transgenic mouse model, it was possible to isolate high-avidity murine CTLs that recognize class I-restricted human p53 epitopes. We isolated the alpha- and beta-chain of a TCR from a highly avid murine CTL clone that recognized the human p53(264-272) epitope. These genes were cloned into a retroviral vector that mediated high efficiency gene transfer into primary human lymphocytes. Efficiencies of >90% for gene transfer into lymphocytes were obtained without selection for transduced cells. The p53 TCR-transduced lymphocytes were able to specifically recognize with high-avidity, peptide-pulsed APCs as well as HLA-A2.1+ cells transfected with either wild-type or mutant p53 protein. p53 TCR-transduced cells demonstrated recognition and killing of a broad spectrum of human tumor cell lines as well as recognition of fresh human tumor cells. Interestingly, both CD8+ and CD4+ subsets were capable of recognizing and killing target cells, stressing the potential application of such a CD8-independent TCR molecule that can mediate both helper and cytotoxic responses. These results suggest that lymphocytes genetically engineered to express anti-p53 TCR may be of value for the adoptive immunotherapy of patients with a variety of common malignancies.  相似文献   

9.
10.
Previous studies have indicated that in transgenic mice expressing human class I MHC molecules, it is difficult to demonstrate a significant CTL response to a viral Ag in the context of the transgenic molecule. In this paper, a procedure is reported for the isolation of influenza-specific murine CTL restricted by the human class I molecule HLA-A2.1. The principal specificity of such CTL is for a fragment of the influenza M1 protein that has been previously shown to be immunodominant for human HLA-A2.1-restricted CTL. CTL of this specificity were also established through the use of peptide-pulsed rather than virus-infected stimulators. The dependence of murine CTL recognition upon peptide length and HLA-A2 structure was established to be similar to that previously reported for human CTL. However, the fine specificity of CTL maintained on virus-infected stimulators was somewhat different from that of CTL maintained with M1 peptide. This suggests that differences in surface density or peptide structure between peptide-pulsed and virus-infected stimulators may result in the outgrowth of T cells with different receptor structures. The immunodominance of the M1 peptide determinant in both mice and humans suggests that species-specific differences in TCR structure, Ag-processing systems, and self-tolerance are of less importance than limitations on the ability of antigenic peptides to bind to appropriate class I molecules. These results thus establish the utility of the transgenic system for the identification of human class I MHC-restricted T cell epitopes.  相似文献   

11.
The alpha 1 and alpha 2 domains of the class I MHC molecule constitute the putative binding site for processed peptides and the TCR, although the alpha 3 domain has been implicated as a binding site for the CD8 molecule. Species specificity in the binding of CD8 to the alpha 3 domain has been suggested as an explanation for the low xenogeneic T cell response to class I molecules, but results on this point have been conflicting and controversial. We have addressed this issue using CTL lines from HLA-A2.1 transgenic mice that specifically recognize and lyse A2.1-expressing cells infected with influenza A/PR/8 or pulsed with influenza matrix peptide M1(57-68). Species specificity was examined using transfectants that expressed hybrid molecules containing the alpha 1 and alpha 2 domains from HLA-A2.1 and the alpha 3 domain from a murine class I molecule. Lower levels of M1(57-68) peptide were required to sensitize L cell transfectants expressing a chimera that contained an H-2Dd alpha 3 domain than targets expressing the intact A2.1 molecule. However, at high doses of peptide, lysis of these two targets was similar. However, no reproducible difference in sensitization was observed using EL4 or Jurkat transfectants expressing A2.1 or A2.1 chimeric molecules that contained an H-2Kb alpha 3 domain. In all cases, however, lysis of peptide-pulsed A2.1 expressing targets was more sensitive to inhibition with anti-CD8 mAb than lysis of cells expressing these chimeric molecules. Thus, under suboptimal conditions such as low Ag density or in the presence of anti-CD8 mAb, these CTL preferentially recognize class I molecules with a murine alpha 3 domain. This suggests that there is some species specificity in the interaction of CD8 with the alpha 3 domain of the class I molecule. However, CTL recognition was inhibited by point mutations in the alpha 3 domain of HLA-A2.1 that have been shown to inhibit binding of human CD8 and recognition by human CTL, suggesting that murine CD8 interacts to some degree with human alpha 3 domains, and that similar alpha 3 domain residues may be important for murine and human CD8 binding. The relevance of these results to an understanding of low xenogeneic responses is discussed.  相似文献   

12.
cDNAs encoding TCR alpha- and beta-chains specific for HLA-A2-restricted cancer-testis Ag NY-ESO-1 were cloned using a 5'RACE method from RNA isolated from a CTL generated by in vitro stimulation of PBMC with modified NY-ESO-1-specific peptide (p157-165, 9V). Functionality of the cloned TCR was confirmed by RNA electroporation of primary PBL. cDNA for these alpha- and beta-chains were used to construct a murine stem cell virus-based retroviral vector, and high titer packaging cell lines were generated. Gene transfer efficiency in primary T lymphocytes of up to 60% was obtained without selection using a method of precoating retroviral vectors onto culture plates. Both CD4(+) and CD8(+) T cells could be transduced at the same efficiency. High avidity Ag recognition was demonstrated by coculture of transduced lymphocytes with target cells pulsed with low levels of peptide (<20 pM). TCR-transduced CD4 T cells, when cocultured with NY-ESO-1 peptide pulsed T2 cells, could produce IFN-gamma, GM-CSF, IL-4, and IL-10, suggesting CD8-independent, HLA-A2-restricted TCR activation. The transduced lymphocytes could efficiently recognize and kill HLA-A2- and NY-ESO-1-positive melanoma cell lines in a 4-h (51)Cr release assay. Finally, transduced T cells could efficiently recognize NY-ESO-1-positive nonmelanoma tumor cell lines. These results strongly support the idea that redirection of normal T cell specificity by TCR gene transfer can have potential applications in tumor adoptive immunotherapy.  相似文献   

13.
Human T cell lymphotropic virus type 1 (HTLV-1)-specific CTL are thought to be immune effectors that reduce the risk of adult T cell leukemia (ATL). However, in vivo conditions of anti-HTLV-1 CTL before and after ATL development have yet to be determined. To characterize anti-HTLV-1 CTL in asymptomatic HTLV-1 carriers (AC) and ATL patients, we analyzed the frequency and diversity of HTLV-1-specific CD8+ T cells in PBMC of 35 AC and 32 ATL patients using 16 distinct epitopes of HTLV-1 Tax or Env/HLA tetramers along with intracellular cytolytic effector molecules (IFN-gamma, perforin, and granzyme B). Overall frequency of subjects possessing Tax-specific CD8+ T cells was significantly lower in ATL than AC (53 vs 90%; p = 0.001), whereas the difference in Env-specific CD8+ T cells was not statistically significant. AC possessed Tax11-19/HLA-A*0201-specific tetramer+ cells by 90% and Tax301-309/HLA-A*2402-specific tetramer+ cells by 92%. Some AC recognized more than one epitope. In contrast, ATL recognized only Tax11-19 with HLA-A*0201 and Tax301-309 with HLA-A*2402 at frequencies of 30 and 55%. There were also significant differences in percentage of cells binding Tax11-19/HLA-A*0201 and Tax301-309/HLA-A*2402 tetramers between AC and ATL. Anti-HTLV-1 Tax CD8+ T cells in AC and ATL produced IFN-gamma in response to Tax. In contrast, perforin and granzyme B expression in anti-HTLV-1 CD8+ T cells of ATL was significant lower than that of AC. Frequency of Tax-specific CD8+ T cells in AC was related to proviral load in HLA-A*0201. These results suggest that decreased frequency, diversity, and function of anti-HTLV-1 Tax CD8+ T cell clones may be one of the risks of ATL development.  相似文献   

14.
Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients. Sorting and expansion of tetramer(+) CD8(+) T cells allowed the isolation of tetramer(bright) and tetramer(dull) populations that specifically recognized the peptide Ag with high and low avidity, respectively. Remarkably, only high avidity CAMEL-specific CTL were able to recognize Ag-expressing tumor cells. A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes. This analysis revealed that tumor-associated CD8(+) T cell epitopes are simultaneously and efficiently generated from both primary and nonprimary ORF products of LAGE-1 and NY-ESO-1 genes and, importantly, that this occurs in the majority of melanoma tumors. These findings underscore the in vivo immunological relevance of CTL epitopes derived from nonprimary ORF products and support their use as candidate vaccines for inducing tumor specific cell-mediated immunity against cancer.  相似文献   

15.
Survivin is a tumor-associated antigen with significant potential as a cancer vaccine target. We have identified a survivin peptide mimic containing human MHC class I epitopes and a potential class II ligand that induces a potent antitumor response in C57BL/6 mice with GL261 cerebral gliomas. This peptide is able to elicit both CD8+ CTL and T helper cell responses in C57BL/6 mice. The corresponding region of the human survivin molecule represented by peptide SVN53-67 is 100% homologous to the murine protein, but SVN53-67 is weakly immunogenic in man. We evaluated several amino acid substitutions in putative human MHC I anchor positions in SVN53-67 to identify potential peptide mimics that could provide an enhanced antitumor immune response against human glioma and primary central nervous system lymphoma (PCNSL) cells in culture. We evaluated survivin peptides with predicted binding to human HLA-A*0201 antigen using peptide-loaded dendritic cells from PBMC of patients with these malignancies. One alteration (M57) led to binding to HLA-A*0201 with significantly higher affinity. We compared the ability of autologous dendritic cells loaded with SVN53-67 peptide and SVN53-67/M57 in CTL assays against allomatched and autologous, survivin-expressing, human malignant glioma and PCNSL cells. Both SVN53-67 and SVN53-67/M57 produced CTL-mediated killing of malignant target cells; however, SVN53-67/M57 was significantly more effective than SVN53-67. Thus, SVN53-67/M57 may act as a peptide mimic to induce an enhanced antitumor CTL response in tumor patients. The use of SVN53-67/M57 as a cancer vaccine might have application for cancer vaccine therapy.  相似文献   

16.
As a result of expression of the influenza hemagglutinin (HA) in the pancreatic islets, the repertoire of HA-specific CD8+ T lymphocytes in InsHA transgenic mice (D2 mice expressing the HA transgene under control of the rat insulin promoter) is comprised of cells that are less responsive to cognate Ag than are HA-specific CD8+ T lymphocytes from conventional mice. Previous studies of tolerance induction involving TCR transgenic T lymphocytes suggested that a variety of different mechanisms can reduce avidity for Ag, including altered cell surface expression of molecules involved in Ag recognition and a deficiency in signaling through the TCR complex. To determine which, if any, of these mechanisms pertain to CD8+ T lymphocytes within a conventional repertoire, HA-specific CD8+ T lymphocytes from B10.D2 mice and B10.D2 InsHA transgenic mice were compared with respect to expression of cell surface molecules, TCR gene utilization, binding of tetrameric KdHA complexes, lytic mechanisms, and diabetogenic potential. No evidence was found for reduced expression of TCR or CD8 by InsHA-derived CTL, nor was there evidence for a defect in triggering lytic activity. However, avidity differences between CD8+ clones correlated with their ability to bind KdHA tetramers. These results argue that most of the KdHA-specific T lymphocytes in InsHA mice are not intrinsically different from KdHA-specific T lymphocytes isolated from conventional animals. They simply express TCRs that are less avid in their binding to KdHA.  相似文献   

17.
Specificity of peptide binding by the HLA-A2.1 molecule   总被引:6,自引:0,他引:6  
The HLA-A2 molecule contains a putative peptide binding site that is bounded by two alpha-helices and a beta-pleated sheet floor. Previous studies have demonstrated that the influenza virus matrix peptide M1 55-73 can sensitize target cells for lysis by HLA-A2.1-restricted virus-immune CTL and can induce CTL that can lyse virus-infected target cells. To assess the specificity of peptide binding by the HLA-A2.1 molecule, we examined the ability of seven variant M1 peptides to be recognized by a panel of M1 55-73 peptide-specific HLA-A2.1-restricted CTL lines. The results demonstrate that five out of the seven variant M1 55-73 peptides could be recognized by A2.1-restricted M1 55-73 peptide-specific CTL lines. The two variant peptides that were not recognized by any CTL could bind to HLA-A2.1 as indicated by their ability to compete for presentation of the M1 55-73 peptide. In addition, 5 of a panel of 24 unrelated peptides tested could also compete for M1 55-73 presentation by HLA-A2.1. One peptide derived from the sequence of a rotavirus protein could sensitize HLA-A2.1+ targets for lysis by M1 55-73 peptide-specific CTL. We conclude from these studies that: 1) the HLA-A2.1 molecule can bind a broad spectrum of peptides; 2) T cells selected for the ability to recognize one peptide plus a class I molecule can actually recognize an unrelated peptide presented by that same class I molecule; and 3) a stretch of three adjacent hydrophobic amino acids may be an important common feature of peptides that can bind to HLA-A2.1.  相似文献   

18.
p53 mutations are frequently found in human cancers and are often associated with the overexpression of wild-type (WT) protein or peptide sequences, supporting the notion that WT p53 epitopes may serve as potential targets for tumor immunotherapy. We have developed a cytotoxic T lymphocyte (CTL)/p53 tumor-associated antigen (TAA) model, based on immune recognition of a WT p53 determinant. WT p53-peptide-specific, major histocompatibility complex (MHC) classI-restricted CTL were produced from immunocompetent C57BL/6 (H-2b) mice after immunization with a previously defined WT p53 peptide (p53(232-240)) Epitope-specific CTL were then employed to identify syngeneic tumor cell populations expressing that antigenic determinant. Two syngeneic tumor cell lines, MC38 colon carcinoma and MC57G fibrosarcoma, were demonstrated to express the endogenous WT p53(232-240) determinant naturally, as defined by CD8 + CTL recognition. Cold-target inhibition assays confirmed that CTL-mediated lysis was due to immune recognition of the p53(232-240) peptide epitope. The p53(232-240)-specific CTL line did not lyse syngeneic normal cells (i.e., mitogen-activated splenocytes) in the absence of exogenous peptide, suggesting that the WT-p53-specific CTL could distinguish between tumor cells expressing self-TAA and normal host cells. We have demonstrated, for the first time, that the adoptive transfer of WT-p53-specific CTL to mice with established pulmonary metastasis resulted in antitumor activity in vivo. The ability to generate MHC-class-I-restricted CD8- CTL lines specific for a non-mutated p53 determinant from normal, immunocompetent mice, which display antitumor activity both in vitro and in vivo (by adoptive transfer), may have implications for the immunotherapy of certain p53-expressing malignancies.  相似文献   

19.
20.
Homozygous HLA-A2.1 transgenic H-2KbnullDbnull double knockout (KO) mice were created. Their potential to develop HLA-A2. 1-restricted cytolytic responses was compared with that of their classical transgenic counterparts, which still express H-2Kb, Db molecules. On cell surfaces, both strains express similar amounts of chimeric (alpha 1 alpha 2 domains of human, alpha 3 cytoplasmic domains of mouse) HLA-A2.1 molecules in noncovalent association with mouse beta 2-microglobulin. Compared with mice that are totally deprived of histocompatibility class Ia molecules (H-2KbnullDbnull double KO), the expression of HLA-A2.1 in transgenic/double KO mice resulted in sizeable increase in the periphery of CD8+ T cells with a normally diversified TCR repertoire. A biased education in favor of HLA-A2.1, ascribable to the absence of H-2 class Ia molecules, was evidenced in these transgenic/double KO mice by their improved capacity to mount HLA-restricted cytolytic responses, regardless of whether they were virally infected or injected with synthetic epitopic peptide. HLA class I transgenic, H-2 class Ia KO mice should represent useful animal models for the preclinical evaluation of vaccine formulations aiming at the induction of HLA class I-restricted CTL responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号