首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amplification of N-myc oncogene is a frequent event in advanced stages of human neuroblastoma and correlates with poor prognosis and enhanced neovascularization. Angiogenesis is an indispensable prerequisite for the progression and metastasis of solid malignancies, which is modulated by tumor suppressors and oncogenes. We have addressed the possibility that N-myc oncogene might regulate angiogenesis in neuroblastoma. Here, we report that experimental N-Myc overexpression results in down-regulation of leukemia inhibitory factor (LIF), a modulator of endothelial cell proliferation. Reporter assays using the LIF promoter and a series of N-Myc mutants clearly demonstrated that down-regulation of the LIF promoter was independent of Myc/Max interaction and required a contiguous N-terminal N-Myc domain. STAT3, a downstream signal transducer, was essential for LIF activity as infection with adenoviruses expressing a phosphorylation-deficient STAT3 mutant rendered endothelial cells insensitive to the antiproliferative action of LIF. LIF did not influence neuroblastoma cell proliferation suggesting that, at least in the context of neuroblastoma, LIF is involved in paracrine rather than autocrine interactions. Our data shed light on the mechanisms by which N-myc oncogene amplification enhances the malignant phenotype in neuroblastoma.  相似文献   

2.
Activin was originally isolated from follicular fluid as a factor stimulating FSH from the pituitary. Recent studies also suggest a local role for activin in the development of preantral and early antral follicles. In the present study, activin and activin receptor immunoreactivity are shown in oocyte and granulosa cells of bovine preantral follicles. In addition, activin immunoreactivity was observed in the theca of secondary follicles. During culture of isolated preantral follicles, activin increased follicular growth and granulosa cell proliferation in a dose-dependent manner. This increase was further stimulated by addition of FSH. In conclusion, activin and its receptor are present on bovine preantral follicles, and additional activin stimulates development of those follicles.  相似文献   

3.
4.
Summary Human recombinant activin A, which is identical with erythroid differentiation factor (EDF), was tested for its mesoderm-inducing activity in concentrations from 0.3–50 ng/ml, using ectoderm of Xenopus late blastula (Stage 9) as the responding tissue. At a low concentration of activin A, blood-like cells, mesenchyme, and coelomic epithelium were induced; at a moderate concentration muscle and neural tissue, and at a high concentration notochord. Activin A thus induced all mesodermal tissues in a dose-dependent manner, such that a low dose induced ventral structures and a high dose induced dorsal structures. Activin may act as an intrinsic inducing molecule responsible for establishing the dorso-ventral axis in early Xenopus development. Offprint requests to: M. Asashima  相似文献   

5.
6.
7.
8.
9.
10.
Amplification of one of three growth-stimulating myc genes is a common method by which many tumor types gain a proliferative advantage. In metastatic human neuroblastoma, the amplification of the N-myc locus, located on chromosome 2, is a dominant feature of this usually fatal pediatric cancer. Of the many models proposed to explain this amplification, all incorporate as the initial step either disproportionate overreplication of the chromosomal site or recombination across a loop structure. The original locus is retained within the chromosome in the overreplication models but is excised in the recombination models. To test these models, we have used somatic cell hybrids to separate and analyze the chromosomes 2 from a neuroblastoma cell line containing in vivo amplified N-myc. Our results demonstrate that N-myc is excised from one of the chromosomes, suggesting that deletion is a requisite part of gene amplification in a naturally occurring system.  相似文献   

11.
A sensitive and specific protein binding assay for activin A/EDF (activin) was developed using follistatin as a binding protein and [125I] labelled activin as a tracer. As 50% acetonitrile (CH3CN) separated free and follistatin-bound activin, plasma pretreated with an equal volume of CH3CN was used as the assay sample and B/F separation was also done with 50% CH3CN. The recovery of the assay was 85.0% and its sensitivity was 0.5 ng/ml. Crossreactivity with inhibin A was 1.8%. The mean plasma level of follistatin-free activin in normal subjects was 1.3 +/- 0.7%. (M +/- SD) ng/ml. Plasma free activin levels were generally elevated in patients with chronic renal failure or hematological diseases associated with anemia.  相似文献   

12.
Activin A, a member of the transforming growth factor-beta superfamily, has a role in tissue repair and inflammation. In our previous studies, we identified by immunohistochemistry DC-SIGN(+) dendritic cells as a source of activin A in vivo. The present study was aimed at investigating activin A production by dendritic cells (DC) in vitro and its function. Here we demonstrate that monocyte-derived DC (Mo-DC) released abundant levels of activin A during the maturation process induced by TLR agonists, bacteria (B. henselae, S. thyphimurium), TNF and CD40L. Activin A was also induced in monocyte-derived Langerhans cells (LC) and in blood myeloid DC by LPS and/or CD40L stimulation, but not in blood plasmacytoid DC following stimulation with influenza virus. Activin A production by DC was selectively down-regulated by anti-inflammatory molecules such as dexamethasone or IL-10. Neutralization of endogenous activin A using its inhibitor follistatin, or the addition of exogenous activin A during LPS maturation did not affect Mo-DC maturation marker expression, cytokine release or allostimulatory function. However, Mo-DC matured with LPS in the presence of exogenous activin A displayed a higher FITC-dextran uptake, similar to that of immature DC. Moreover, activin A promoted monocyte differentiation to DC and reversed the inhibitory effects of IL-6 on DC differentiation of monocytes. These findings demonstrate that different subsets of DC release activin A, a cytokine that promotes DC generation, and affects the ability of mature DC to take up antigens (Ags).  相似文献   

13.
It has been suggested that deregulation of activin signaling contributes to tumor formation. Activin signaling is blocked in cancer cells due to the complex formed by Cripto-1, activin, and activin receptor type II (ActRII). In this study, the authors used a mammalian two-hybrid system to construct a drug screening model to obtain a small molecular inhibitor capable of interrupting the interaction between Cripto-1 and ActRII. They screened 300 natural components and identified alantolactone. Data suggested that alantolactone induced activin/SMAD3 signaling in human colon adenocarcinoma HCT-8 cells. The authors also found that alantolactone exhibited antiproliferative function specific to tumor cells, with almost no toxicity to normal cells at a concentration of 5 μg/mL. Furthermore, they proved that the antiproliferative function of alantolactone was activin/SMAD3 dependent. These results suggest that alantolactone performs its antitumor effect by interrupting the interaction between Cripto-1 and the activin receptor type IIA in the activin signaling pathway. Moreover, screening for inhibitors of Cripto-1/ActRII is a potentially beneficial approach to aid in discovering novel cancer treatment.  相似文献   

14.
We demonstrated the presence of five species of the activin beta A mRNA in human placenta and one major RNA associated with two minor RNAs of the activin in the fetal membrane. We investigated the effect of 8-bromo-cAMP (8-Br-cAMP) on accumulation of activin beta A subunit mRNA in human fibrosarcoma HT1080 cells. Although low levels of the activin mRNA were detectable in the untreated cells, the one main RNA species was predominantly accumulated by 8-Br-cAMP. We propose that generation of multiple activin mRNAs in the fetal membrane and cAMP-treated HT1080 cells is presumably due to a cell-specific alternative polyadenylation.  相似文献   

15.

Background  

Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC) in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta) family including activin A (ActA) and inhibin A (InA) are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype.  相似文献   

16.
The aim of this study was to investigate the effects of activin A on development, differential cell counts and apoptosis/necrosis rates of bovine embryos produced in vitro. Presumptive zygotes were cultured up to Day 8 in synthetic oviduct fluid containing aminoacids, citrate, myo-inositol and BSA. In Experiment 1, activin (10 ng mL−1) was added: 1/from Day 1 to Day 3; 2/from Day 1 to Day 8; 3/from Day 3 to Day 8; or 4/absent (control). In Experiment 2, 10 ng mL−1 activin were added either before (Day 3 to Day 5) or after (Day 5 to Day 8) the early morula stage. In Experiment 1, activin during the first 72 h of culture reduced Day 3 cleavage, 5-8 cell rates and blastocyst development, while hatching rates increased. No changes were observed within differential cell counts. In experiment 2, activin improved blastocyst development after, and had no effect before, the Day 5 morula stage. However, trophectoderm (TE) cell numbers decreased with activin both before and after the Day 5 morula stage, suggesting that activin inhibits TE differentiation. The presence of activin during the whole culture had no effect on TUNEL positive cells, but when added at shorter periods activin increased apoptotic rates. Effects of activin during in vitro bovine embryo development, depends on timing of its addition to the culture medium.  相似文献   

17.
Ventral prostate development occurs by branching morphogenesis and is an androgen-dependent process modulated by growth factors. Many growth factors have been implicated in branching morphogenesis including activins (dimers of beta(A) and beta(B) subunits); activin A inhibited branching of lung and kidney in vitro. Our aim was to examine the role of activins on prostatic development in vitro and their localization in vivo. Organ culture of day 0 rat ventral prostates for 6 days with activin A (+/- testosterone) inhibited prostatic branching and growth without increasing apoptosis. The activin-binding protein follistatin increased branching in vitro in the absence (but not presence) of testosterone, suggesting endogenous activins may reduce prostatic branching morphogenesis. In vivo, inhibin alpha subunit was not expressed until puberty, therefore inhibins (dimers of alpha and beta subunits) are not involved in prostatic development. Activin beta(A) was immunolocalized to developing prostatic epithelium and mesenchymal aggregates at ductal tips. Activin beta(B) immunoreactivity was weak during development, but was upregulated in prostatic epithelium during puberty. Activin receptors were expressed throughout the prostatic epithelium. Follistatin mRNA and protein were expressed throughout the prostatic epithelium. The in vitro evidence that activin and follistatin have opposing effects on ductal branching suggests a role for activin as a negative regulator of prostatic ductal branching morphogenesis.  相似文献   

18.
The aim of this study was to locate a possible activin/activin receptor system within porcine ovaries containing functional corpora lutea. In situ hybridization was used to assess the gene expression of beta(A)- and beta(B)-activin subunits, and immunohistochemical studies were done to detect activin-A protein and activin receptor type II. mRNA expression of the beta(A)- and beta(B)-activin subunits was found in the granulosa from the unilaminar follicle stage onward, in the developing thecal layer of multilaminar and small antral follicles, in the theca interna of mid-sized antral follicles, in corpora lutea, and in the ovarian surface epithelium. Immunoreactive activin A protein could be detected at the same ovarian sites, but in thecal tissue of small antral follicles only. This protein was also demonstrated at the peripheral zone of oocytes from multilaminar and antral follicles. A positive immunoreaction for activin receptor was found in granulosa cells from multilaminar and older follicles and in oocytes from the earliest stages of follicular development onward. In late multilaminar follicles and in antral follicles, the oolemma was stained. Except for small antral follicles, a positive activin receptor immunoreaction was absent in the follicular theca. Activin receptor immunoreaction was furthermore present in corpora lutea and in the ovarian surface epithelium. It is concluded that, within porcine ovaries containing functional corpora lutea, an activin/activin receptor system is present in all intact follicles, the corpora lutea and the surface epithelium. Within follicles, granulosa and theca cells are the main sites of activin synthesis, while oocytes and granulosa cells are the main activin binding sites.  相似文献   

19.
20.
Gene expression of activin, activin receptors, and follistatin was investigated in vivo and in vitro using semiquantitative RT-PCR in intestinal epithelial cells. Rat jejunum and the intestinal epithelial cell line IEC-6 expressed mRNA encoding the betaA-subunit of activin, alpha-subunit of inhibin, activin receptors IB and IIA, and follistatin. An epithelial cell isolation study focused along the crypt-villus axis in rat jejunum showed that betaA mRNA levels were eight- to tenfold higher in villus cells than in crypt cells. Immunohistochemistry revealed the expression of activin A in upper villus cells. The human intestinal cell line Caco-2 was used as a differentiation model of enterocytes. Four- to fivefold induction of betaA mRNA was observed in postconfluent Caco-2 cells grown on filter but not in those cells grown on plastic. In contrast, follistatin mRNA was seen to be reduced after reaching confluence. Exogenous activin A dose-dependently suppressed the proliferation and stimulated the expression of apolipoprotein A-IV gene, a differentiation marker, in IEC-6 cells. These results suggest that the activin system is involved in the regulation of such cellular functions as proliferation and differentiation in intestinal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号