首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein translocation system of Escherichia coli was solubilized and reconstituted, using the octylglucoside dilution method, into liposomes prepared from E. coli phospholipids. SecA, ATP, phospholipids and membrane proteins were found to be essential for the translocation of a model secretory protein, uncleavable OmpF-Lpp. Phospholipids were found to play roles not only in liposome formation but also in the stabilization of membrane proteins during the octylglucoside extraction. The effects of IgGs specific to five distinct regions of the SecY molecule on protein translocation into proteoliposomes were examined. IgGs specific to the amino- and carboxyl-terminal regions of the SecY molecule strongly inhibited the translocation activity, indicating the participation of SecY in the translocation. Generation of a proton motive force due to the simultaneous reconstitution of F0F1-ATPase was also observed in the presence of ATP. An ATP-generating system consisting of creatine phosphate and creatine kinase significantly enhanced the formation of the proton motive force and the protein translocation activity of the proteoliposomes. Collapse of the proton motive force thus generated partially inhibited the translocation.  相似文献   

2.
RecA- mutants of Escherichia coli extensively degrade their DNA following UV irradiation. Most of this degradation is due to the recBC DNase, which suggests that the recA gene is involved in the control of recBC DNase in vivo. We have shown that purified recA protein inhibits the endonuclease and exonuclease activities of recBC DNase on single-stranded DNA. The extent of inhibition is dependent on the relative concentration of recA protein, recBC DNase, and the DNA substrate; inhibition is greatest when the concentrations of DNA and recBC DNase are low and the concentrations of recA protein is high. At fixed concentrations of recA protein and recBC DNase, inhibition is eliminated at high concentrations of DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), an ATP analog which stabilizes the binding of recA protein to both single- and double-stranded DNA, recA protein is a more potent inhibitor of the nuclease activities on single-stranded DNA and is a weak inhibitor of the exonuclease activity on double-stranded DNA. Inhibition of the latter is enhanced by oligodeoxynucleotides, which stimulate the binding of recA protein to double-stranded DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), recA protein also inhibits the action of exonuclease I on single-stranded DNA and of lambda exonuclease on double-stranded DNA. These observations are most consistent with the idea that recA protein protects DNA from recBC DNase by binding to DNA. RecA protein also blocks the endonucleolytic cleavage of gapped circular DNA by recBC DNase. Since both recA protein and recBC DNase have the ability under certain conditions to unwind duplex DNA and to displace strands, we looked for evidence that their combined action would enlarge gaps but found no extensive enlargement. D-loops, a putative intermediate in genetic recombination, are effectively protected against the action of recBC DNase by the E. coli single strand binding protein and by recA protein in the presence of adenosine 5'-O-(3-thiotriphosphate).  相似文献   

3.
Pseudorevertants of an Escherichia coli exonuclease V (RecBC enzyme)-negative mutant have been isolated after ethyl methane sulfonate mutagenesis of a recC73 (presumed missense) mutant. The remedial mutations in each of the four pseudorevertants studied in detail map and complement as recC mutations. By several criteria, such as recombination proficiency, support of phage growth, RecBC nuclease activity, and cell viability, the pseudorevertants appear to have regained partially or completely various aspects of RecBC activity. However, chi recombinational hotspots, which stimulate exclusively the RecBC pathway of recombination, have no detectable activity in lambda vegetative crosses in the pseudorevertants. The properties of these mutants, in which the RecBC pathway of recombination is active yet in which chi is not active, are consistent with the hypothesis that wild-type RecBC enzyme directly interacts with chi sites; alternatively, the mutants may block or bypass the productive interaction of another recombinational enzyme with chi.  相似文献   

4.
beta-Adrenergic receptors, the GTP-binding regulatory protein that stimulates adenylate cyclase (Gs), and adenylate cyclase were each purified and reconstituted into unilamellar vesicles composed of phosphatidylethanolamine and phosphatidylserine (3:2, w/w). The molar ratio of receptor:Gs:adenylate cyclase was estimated to be about 1:10:1. Adenylate cyclase activity in the vesicles was stimulated up to 2.6-fold by beta-adrenergic agonists. Stimulation was dependent on the presence of guanine nucleotide, displayed appropriate beta-adrenergic selectivity and stereoselectivity for agonists, and was blocked appropriately by beta-adrenergic antagonists. Therefore, while additional proteins may modulate adenylate cyclase activity in native membranes, these results show that these three proteins are sufficient for the expression of hormone-stimulated adenylate cyclase.  相似文献   

5.
Analysis of E.coli chromosomes isolated under conditions similar to those used for isolation of eukaryotic chromatin has shown that: 1) The proteins of highly purified E.coli deoxyribonucleoprotein are mainly in addition to RNA polymerase two specific histone-like proteins of apparent molecular weight of 17,000 and 9,000 (proteins 1 and 2, respectively). 2) Proteins 1 and 2 occur in approximately equal molar amounts in the isolated E.coli chromosome, and their relative content corresponds to one molecule of protein 1 plus one molecule of protein 2 per 150-200 base pairs of DNA. 3) There are no long stretches of naked DNA in the purified E.coli deoxyribonucleoprotein suggesting a fairly uniform distribution of the proteins 1 and 2 along DNA. 4) The protein 2 is apparently identical to the DNA-binding protein HU which was isolated previously /1/ from extracts of E.coli cells. 5) Digestion of the isolated E.coli chromosomes with staphylococcal nuclease proceeds through discrete deoxyribonucleoprotein intermediates (in particular, at approximately 120 base pairs) which contain both proteins 1 and 2. However, since no repeating multimer structure was observed so far in nuclease digests of the E.coli chromosome, it seems premature to draw definite conclusions about possible similarities between the nucleosomal organization of the eukaryotic chromatin and the E.coli chromatin structure.Images  相似文献   

6.
The Escherichia coli RecBCD holoenzyme and the individual constituent subunits have been purified from overproducing strains. The purified RecBCD holoenzyme has a native molecular mass of approximately 330 kDa, indicative of a heterotrimer subunit assembly. The RecB, RecC, and RecD subunits can associate in vitro to give nuclease, helicase, ATPase, and Chi-specific endonuclease activities which are indistinguishable from those of the RecBCD holoenzyme. At concentrations at which the reconstituted RecB + C + D enzyme is very active, none of the individual RecB, RecC, or RecD subunits have readily detectable activities of the holoenzyme, except RecB protein which had previously been shown to exhibit DNA-dependent ATPase activity (Hickson, I. D., Robson, C. N., Atkinson, K. E., Hutton, L., and Emmerson, P. T. (1985) J. Biol. Chem. 260, 1224-1229). At higher concentrations and with shorter DNA substrates reconstituted RecBC protein exhibits low levels of helicase and exonuclease activity.  相似文献   

7.
The RecBC enzyme of Escherichia coli promotes genetic recombination of phage or bacterial chromosomes. The purified enzyme travels through duplex DNA, unwinding and rewinding the DNA with the transient production of potentially recombinogenic single-stranded DNA. The studies reported here are aimed at understanding which chromosomal forms allow the entry of RecBC enzyme and hence may undergo RecBC enzyme-mediated recombination. Circular duplex molecules, whether covalently closed, nicked or containing single-stranded gaps of 10 to 774 nucleotides, are not detectably unwound by RecBC enzyme. Linear duplex molecules are readily unwound if they have a nearly flush-ended terminus whose 5' and 3' ends are offset by no more than about 25 nucleotides; molecules with longer single-stranded tails are poorly bound by RecBC enzyme and are infrequently unwound. The single-strand endonuclease activity of RecBC enzyme can slowly cleave gapped circles to produce molecules presumably capable of being unwound. These results provide an enzymatic basis for the recombinogenicity of double-stranded DNA ends established from genetic studies of RecBC enzyme and Chi sites, recognition sites for RecBC enzyme-mediated DNA strand cleavage.  相似文献   

8.
Thiamine is biosynthesized by combining two heterocyclic precursors. In Escherichia coli and other anaerobes, one of the heterocycles, 4-methyl-5-(beta-hydroxyethyl) thiazole phosphate, is biosynthesized from 1-deoxyxylulose-5-phosphate, tyrosine, and cysteine. Genetic evidence has identified thiH, thiG, thiS, and thiF as essential for thiazole biosynthesis in E. coli. In this paper, we describe the measurement of the thiazole phosphate-forming reaction using purified protein components. The activity is shown to require four proteins isolated as heterodimers: ThiGH and ThiFS. Reconstitution of the [4Fe-4S] cluster in ThiH was essential for activity, as was the use of ThiS in the thiocarboxylate form. Spectroscopic studies with ThiGH strongly suggested that S-adenosylmethionine (AdoMet) bound to the [4Fe-4S] cluster, which became more susceptible to reduction to the +1 state. Assays of thiazole phosphate formation showed that, in addition to the proteins, Dxp, tyrosine, AdoMet, and a reductant were required. The analysis showed that no more than 1 mol eq of thiazole phosphate was formed per ThiGH. Furthermore, for each mole of thiazole-P formed, 1 eq of AdoMet and 1 eq of tyrosine were utilized, and 1 eq of 5'-deoxyadenosine was produced. These results demonstrate that ThiH is a member of the "radical-AdoMet" family and support a mechanistic hypothesis in which AdoMet is reductively cleaved to yield a highly reactive 5'-deoxyadenosyl radical. This radical is proposed to abstract the phenolic hydrogen atom from tyrosine, and the resultant substrate radical cleaves to yield dehydroglycine, which is required by ThiG for the thiazole cyclization reaction.  相似文献   

9.
Ornithine carbamoyltransferase (OTC; subunit, 36,000 Da) is initially synthesized as a precursor (pOTC) with a transient NH2-terminal presequence of 32 amino acid residues and imported posttranslationally into the mitochondrial matrix. The rat pOTC was synthesized in Escherichia coli using an expression vector containing a thermoinducible lambda pL promoter. The recombinant pOTC represented 5-10% of the total bacterial protein and was present in the precipitate of the disrupted bacteria. The precipitate was washed and pOTC was extracted with 8 M urea or 0.1% cetyltrimethylammonium bromide. The extracted pOTC was essentially homogeneous, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified pOTC was cleaved to the intermediate-sized product of 37,000 Da by a processing protease partially purified from the matrix fraction of rat liver mitochondria. The purified recombinant pOTC, but not the mature form of OTC synthesized in E. coli and purified, competed with the in vitro-synthesized, radiolabeled pOTC for uptake and processing by the isolated rat liver mitochondria. The radiolabeled and purified recombinant pOTC could be imported into the isolated mitochondria and processed to the mature form in an energy- and rabbit reticulocyte lysate-dependent manner. When the purified pOTC was subjected to sucrose gradient centrifugation, it sedimented as a large aggregate of greater than 60 S in the absence of reticulocyte lysate, whereas it sedimented as a complex of about 5 S in the presence of the lysate. These observations together with our previous results indicate that a protein factor(s) present in the lysate interacts with pOTC and holds it in an import-competent form.  相似文献   

10.
Resolution of the fumarate reductase complex (ABCD) of Escherichia coli into reconstitutively active enzyme (AB) and a detergent preparation containing peptides C and D resulted in loss of quinone reductase activity, but the phenazine methosulfate or fumarate reductase activity of the enzyme was unaffected. An essential role for peptides C and D in quinone reduction was confirmed by restoration of this activity on recombination of the respective preparations. Neither peptide C nor peptide D by itself proved capable of permitting quinone reduction and membrane binding by the enzyme when E. coli cells were transformed with plasmids coding for the enzyme and the particular peptides. Transformation of a plasmid coding for all subunits resulted in a 30-fold increase in membrane-bound complex, which exhibited, however, turnover numbers for succinate oxidation and fumarate reduction that were intermediate between the high values characteristic of chromosomally produced complex and the relatively low values found for the isolated complex. It is also shown that preparations of the isolated complex and membrane-bound form of the enzyme, as obtained from anaerobically grown cells, are in the deactivated state owing to the presence of tightly bound oxalacetate and thus must be activated prior to assay.  相似文献   

11.
The repair response of Escherichia coli K-12 to bleomycin was examined in Rec- mutants showing differential sensitivity to this agent. Sedimentation analysis of the cellular DNA showed incision after bleomycin treatment. The subsequent reformation of the DNA, found in the wild-type and the recD mutant, was abolished in the recB and delayed in the recF and recBC sbcB mutants. The bleomycin-induced SOS response was reduced in strains containing recB or recBC sbsB mutations. It is suggested that the RecBCD pathway has the main role in the efficient repair of bleomycin-induced DNA damage.  相似文献   

12.
Shutoff of respiration is one of a number of recA+ lexA+ dependent (SOS) responses caused by far ultraviolet (245 nm) radiation (UV) damage of DNA in Escherichia coli cells. Thus far no rec/lex response has been shown to require the recB recC gene product, the RecBC enzyme. We report in this paper that UV-induced respiration shutoff did not occur in either of these radiation-sensitive derivatives of K12 strain AB1157 nor in the recB recC double mutant. The sbcB gene product is exonuclease I and it has been reported that the triple mutant strain recB recC sbcB has near normal recombination efficiency and resistance to UV. The sbcB strain shut off its respiration after UV but the triple mutant did not show UV-induced respiration shutoff; the shutoff and death responses were uncoupled. We concluded that respiration shutoff requires RecBC enzyme activity. The RecBC enzyme has ATP-dependent double-strand exonuclease activity, helicase activity and several other activities. We tested a recBC+ (double dagger) mutant strain (recC 1010) that had normal recombination efficiency and resistance to UV but which possessed no ATP-dependent double-strand exonuclease activity. This strain did not shut off its respiration. The presence or absence of other RecBC enzyme activities in this mutant is not known. These results support the hypothesis that ATP-dependent double-strand exonuclease activity is necessary for UV-induced respiration shutoff.  相似文献   

13.
Recently, an open reading frame which has a deduced amino acid sequence that shows 38% homology to Escherichia coli UvrC protein was found upstream of the aspartokinase II gene (ask) in Bacillus subtilis (Chen, N.-Y., Zhang, J.-J., and Paulus, H. (1989) J. Gen. Microbiol. 135, 2931-2940). We found that plasmids containing this open reading frame complement the uvrC mutations in E. coli. We joined the open reading frame to a tac promoter to amplify the gene product in E. coli and purified the protein to near homogeneity. The apparent molecular weight of the gene product is 69,000, which is consistent with the calculated molecular weight of 69,378 fro the deduced gene product of the open reading frame. The purified gene product causes the nicking of DNA at the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to a thymine dimer when mixed with E. coli UvrA and UvrB proteins and a DNA substrate containing a uniquely located thymine dimer. We conclude that the gene product of the open reading frame is the B. subtilis UvrC protein. Our results suggest that the B. subtilis nucleotide excision repair system is quite similar to that of E. coli. Furthermore, complementation of the UvrA and UvrB proteins from a Gram-negative bacterium with the UvrC protein of Gram-positive B. subtilis indicates a significant evolutionary conservation of the nucleotide excision repair system.  相似文献   

14.
Properties of purified ribonuclease P from Escherichia coli   总被引:12,自引:0,他引:12  
R Kole  S Altman 《Biochemistry》1981,20(7):1902-1906
The purified protein moiety of ribonuclease P (EC 3.1.26.5) from Escherichia coli, a single polypeptide of molecular weight approximately 17 500, has not catalytic activity by itself on several RNA substrates. However, when it is marked in vitro with an RNA species called M1 RNA, RNase P activity is reconstituted. The rate at which the purified RNase P cleaves any particular tRNA precursor molecule depends on the identity of that tRNA precursor.  相似文献   

15.
Rates of diffusion of uncharged and charged solute molecules through porin channels were determined by using liposomes reconstituted from egg phosphatidylcholine and purified Escherichia coli porins OmpF (protein 1a), OmpC (protein 1b), and PhoE (protein E). All three porin proteins appeared to produce channels of similar size, although the OmpF channel appeared to be 7 to 9% larger than the OmpC and PhoE channels in an equivalent radius. Hydrophobicity of the solute retarded the penetration through all three channels in a similar manner. The presence of one negative charge on the solute resulted in about a threefold reduction in penetration rates through OmpF and OmpC channels, whereas it produced two- to tenfold acceleration of diffusion through the PhoE channel. The addition of the second negatively charged group to the solutes decreased the diffusion rates through OmpF and OmpC channels further, whereas diffusion through the PhoE channel was not affected much. These results suggest that PhoE specializes in the uptake of negatively charged solutes. At the present level of resolution, no sign of true solute specificity was found in OmpF and OmpC channels; peptides, for example, diffused through both of these channels at rates expected from their molecular size, hydrophobicity, and charge. However, the OmpF porin channel allowed influx of more solute molecules per unit time than did the equivalent weight of the OmpC porin when the flux was driven by a concentration gradient of the same size. This apparent difference in "efficiency" became more pronounced with larger solutes, and it is likely to be the consequence of the difference in the sizes of OmpF and OmpC channels.  相似文献   

16.
Chi sites are examples of special sites enhancing homologous recombination in their region of the chromosome. Chi, 5′ G-C-T-G-G-T-G-G3′, is a recognition site for the RecBC enzyme, which nicks DNA near Chi as it unwinds DNA. A molecular model of genetic recombination incorporating these features is reviewed.  相似文献   

17.
The ribosome is a highly dynamic ribonucleoprotein machine. During assembly and during translation the ribosomal RNAs must routinely be prevented from falling into kinetic folding traps. Stable occupation of these trapped states may be prevented by proteins with RNA chaperone activity. Here, ribosomal proteins from the large (50S) ribosome subunit of Escherichia coli were tested for RNA chaperone activity in an in vitro trans splicing assay. Nearly a third of the 34 large ribosomal subunit proteins displayed RNA chaperone activity. We discuss a possible role of this function during ribosome assembly and during translation.  相似文献   

18.
The RecB subunit of the Escherichia coli RecBCD enzyme has been shown in previous work to have two domains: an N-terminal 100 kDa domain with ATP-dependent helicase activity, and a C-terminal 30 kDa domain. The 30 kDa domain had nuclease activity when linked to a heterologous DNA binding protein, but by itself it appeared unable to bind DNA and lacked detectable nuclease activity. We have expressed and isolated this 30 kDa domain, called RecB(N), and show that it does have nuclease activity detectable at high protein concentration in the presence of polyethylene glycol, added as a molecular crowding agent. The activity is undetectable in a mutant RecB(N)protein in which an aspartate residue has been changed to alanine. Structural analysis of the wild-type and mutant RecB(N)proteins by second derivative absorbance and circular dichroism spectroscopy indicates that both are folded proteins with very similar secondary and tertiary structures. The results show that the Asp-->Ala mutation has not caused a significant structural change in the isolated domain and they support the conclusion that the C-terminal domain of RecB has the sole nuclease active site of RecBCD.  相似文献   

19.
A M Slutskii  V K Gordeev 《Genetika》1978,14(10):1706-1713
Effects of mutations in genes PolA, RecA, RecB and RecC of Escherichia coli on the recombination frequencies between rII markers of T4 have been studied in conditions of partial inhibition of some early functions. It was found that the presence of the mutations in genes PolA or RecA decreased significantly the recombination frequency of phage amber mutant in the gene 43 (DNA polymerase), increased it in the case of amber mutation in the gene 46 (exonuclease) and had no effect on the recombination of amber mutants in genes 30, 32, 33, 41, 42, 45, 44, 52. None of the amber mutants studied changed recombination frequencies in the presence of the mutations in genes RecB or RecC. Possible mechanisms of some of the effects observed are discussed.  相似文献   

20.
Galactose transport activity from Escherichia coli was solubilized with octyl glucoside, and reconstituted into liposomes made from soybean or E. coli lipid. Galactose counterflow in the proteoliposomes was inhibited by glucose, talose, 2-deoxygalactose and 6-deoxygalactose, confirming that it was due to GalP and not one of the other E. coli galactose transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号