首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Summary A highly purified vegetalizing factor induces endoderm preferentially in amphibian gastrula ectoderm. After combination of this factor with less pure fractions, a high percentage of trunks and tails with notochord and somites are induced. The induction of these mesodermal tissues depends on secondary factors which may act on plasma membrane receptors of the target cells. The secondary factors are probably proteins as they are inactivated by trypsin or cellulose-bound proteinase K. They are not inactivated by thioglycolic acid.The implication of these findings for tissue determination and differentiation in normal development in relation to the anlageplan for endoderm and mesodermal tissues is discussed.  相似文献   

5.
Activin is a potent mesoderm inducing factor present in embryos of Xenopus laevis. Recent evidence has implicated activin in the inhibition of neural development in addition to the well-established induction of mesoderm in ectodermal explants. These diverse effects are critically dependent on the concentration of activin yet little is known about the mechanisms regulating the level of activin in the embryo. We report that the 3′ untranslated region (3′ UTR) of activin βB mRNA inhibits the translation of activin in embryos. Microinjection of activin mRNA from which the 3′ UTR has been deleted is 8–10-fold more potent in inducing mesoderm than mRNA containing the 3′ UTR. Truncation of the 3′ UTR also leads to a marked enhancement of activin protein levels in embryos but has no effect when the truncated mRNA is translated in vitro. The 3′ UTR also confers translational inhibition on a heterologous mRNA. These data show that a maternal factor(s) present in X. laevis regulates the translation of injected activin βB mRNA. This factor(s) could be responsible for regulating the levels of endogenous activin βB protein during mesoderm induction and the specification of ectodermal derivatives such as neural and epidermal tissues. © 1995 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
9.
During the process of mesoderm specification in Xenopus embryos, cells of the equatorial region are induced to form mesoderm in response to signals from the underlying endodermal cells. One mesodermal cell type resulting from this in vivo induction is skeletal muscle, which has a very specific and tightly regulated course of electrical and morphological development. Previously, electrical development could be analyzed only after neurulation, once myocytes could be morphologically identified. In vitro, activin triggers a cascade of events leading to the development of specific mesodermal tissues, including skeletal muscle; however, the precise role of activin in vivo is less clear. Much is now known about the mechanism and control of activin action, but very little is known about the subsequent time course of differentiation of activin-induced muscle. Such muscle is routinely identified by the presence of a small number of specific markers which, although they accurately confirm the presence of muscle, give little indication of the time course or quantitative aspects of muscle development. One of the most important functional aspects of muscle development is the acquisition of the complex electrical properties which allow it to function normally. Here we assess the ability of activin to drive in vitro the normal highly regulated sequence of electrical development in skeletal muscle. We find that in most, but not all, respects the normal time course of development of voltage-gated ion currents is well reproduced in activin-induced muscle. This characterization strengthens the case for activin as an agent capable of inducing the detailed developmental program of muscle and now allows for analysis of the regulation of electrical development prior to neurulation.  相似文献   

10.
The expression of heparan sulfate glycosaminoglycan (HS-GAG) was examined in Xenopus embryos during the developmental stages. Chemical analysis showed the existence of HS-GAG in the 35S-labeled embryos. By western blot analysis using a specific anti-HS monoclonal antibody, HS-GAG related epitope was found after the neurulation on two protein bands, whose molecular weights were approximately 90 kDa and 100 kDa, respectively. Immunohistochemistry revealed that HS-GAG occurred exclusively in the animal hemisphere in early gastrulae, and then appeared predominantly on the sheath of the neural tube, the notochord and epithelium. To address whether HS-GAG chains contribute to Xenopus embryonic development, we eliminated the embryonic HS-GAG by injecting purified Flavobacterium heparitinases (HSase) into their blastocoels. Most of the injected embryos were aberrant in mesodermal and neural formation, and became acephalic. Histological examination showed that these embryos were completely devoid of the central nervous system and the mesodermal tissues. Neither heat-inactivated heparitinase nor chondroitinase showed such abnormality. The HS-GAG-eliminated embryos showed decreased expression of both muscular and neural-specific markers. These results suggest that HS-GAG plays an indispensable role in establishing the fundamental body plan during early Xenopus development.  相似文献   

11.
Here we show that XsalF, a frog homolog of the Drosophila homeotic selector spalt, plays an essential role for the forebrain/midbrain determination in Xenopus. XsalF overexpression expands the domain of forebrain/midbrain genes and suppresses midbrain/hindbrain boundary (MHB) markers and anterior hindbrain genes. Loss-of-function studies show that XsalF is essential for the expression of the forebrain/midbrain genes and for the repression of the caudal genes. Interestingly, XsalF functions by antagonizing canonical Wnt signaling, which promotes caudalization of neural tissues. XsalF is required for anterior-specific expressions of GSK3beta and Tcf3, genes encoding antagonistic effectors of Wnt signaling. Loss-of-function phenotypes of GSK3beta and Tcf3 mimic those of XsalF while injections of GSK3beta and Tcf3 rescue loss-of-function phenotypes of XsalF. These findings suggest that the forebrain/midbrain-specific gene XsalF negatively controls cellular responsiveness to posteriorizing Wnt signals by regulating region-specific GSK3beta and Tcf3 expression.  相似文献   

12.
Correlation between activin and retinoic acid (RA), both of which affect early amphibian development, was studied using Xenopus laevis embryos. In the first set of experiments, two isomers of RA, all- trans RA and 13- cis RA, were compared in terms of stability of biological activity against light. Xenopus blastulae were dipped in RA solutions which had either been kept away from light, or had been exposed to light for a few hours. At doses ranging from 10–4to 10–6M, RA elicited head deformity. All- trans RA, under both dark and light conditions, had similarly potent effects. On the other hand, 13- cis RA under dark conditions had much weaker effects than it did under light conditions.
In the second set of experiments, activin was mixed with all- trans RA, and the inducing effects on the animal cap explants were investigated. Activin at a concentration of 10 ng/ml induced notochord. In combination with 10–6M RA, muscle was well induced instead of notochord. In combination with 10–5M RA, pronephric tubules were markedly induced. Pronephric tubules were never induced by activin alone, at any of the various concentrations employed. This is the first report on the very high frequency of induction of pronephric tubules by the combination of activin A and all- trans RA in the Xenopus ectoderm.  相似文献   

13.
14.
Genetic studies substantiate that mesodermal convergent extension expressed behind the anteroposterior borderline, in the form of a gradient with the posterior apex after gastrulation, regulates morphogenesis of the posterior zone at the dorsal and dorso-lateral levels which is in full agreement with the model of dorsalization–caudalization. In contrast, how anteroposterior specification of mesodermal tissues occurs at the ventral and latero-ventral levels is not yet understood.  相似文献   

15.
非洲爪蟾卵母细胞GABAB和GABAc受体介导的电流反应   总被引:4,自引:0,他引:4  
Yang Q  Li ZW  Wei JB 《生理学报》2001,53(4):311-315
实验应用双电极电压箝技术,在具有滤泡膜的非洲爪蟾(Xenopuslaevis)卵母细胞上记录到γ-氨基丁酸(γ-aminobutyricacid,GABA)-激活电流。此GABA-激活电流的特点及有关GABA受体类型的研究和分析如下(1)在35.5%(55/155)的受检细胞外加GABA可引起一慢的浓度依赖性的外向电流。(2)GABAA受体的选择性拮抗剂bicuculline(10  相似文献   

16.
Both the activin and Wnt families of peptide growth factors are capable of inducing dorsal mesoderm in Xenopus embryos. Presumptive ventral ectoderm cells isolated from embryos injected with Xwnt8 mRNA were cultured in the presence of activin A to study the possible interactions between these two classes of signaling proteins. We find that overexpression of Xwnt8 RNA alters the response of ventral ectoderm to activin such that ventral explants differentiate dorsoanterior structures including notochord and eyes. This response is similar to the response of dorsal ectoderm to activin alone. When embryos are irradiated with uv light to inhibit dorsal axis formation, ectodermal explants differentiate notochord when they are induced by a combination of both signaling factors, but not when cells receive only one inducing signal (activin or Xwnt8). This result is further supported by the observation that goosecoid (gsc) mRNA, an early marker for dorsal mesoderm, is expressed in these explants only when they are injected with Xwnt8 mRNA followed by exposure to activin. Early morphogenetic movements of the induced cells and activation of muscle-specific actin and Brachyury (Xbra) genes also reveal a cooperation of activin A and Xwnt8 in mesoderm induction.  相似文献   

17.
18.
We examined the quality of mesoderm induced by the action of activin A on the Xenopus presumptive ectoderm when various concentrations and treatment times were employed. The minimum concentration of activin A to induce mesodermal tissues was inversely proportional to its treatment time. The explants differentiated into different types of mesodermal tissues, from ventral-type to dorsal-type depending on the concentration of activin A and its treatment time. To confirm whether activin A has a role in establishing axial organization, activin A was injected into the blastocoel of late blastulae. About 70% of the injected embryos formed secondary tail-shaped outgrowths in which muscle and neural tube differentiated. The amount of activin A to form secondary outgrowths was 0.5-2.5 pg, roughly consistent with the amount estimated from in vitro experiments. As we have detected almost the same amount of activin homologue in the early embryos (Asashima et al., 1991a), we speculate that activin A may be the natural mesodermal inducer, and that it is responsible for establishing axial organization in the Xenopus embryo.  相似文献   

19.
20.
We examined the timing and mechanisms of mesodermal and neural determination in Cynops , using the secondary embryo induced by transplantation of the prechordal endomesoderm. Two unique approaches were used: one was to observe gastrulation movements induced by the graft, and the other to measure the volumes of formed tissues. Transplanted graft pulled host animal cap cells inside to form a new notochord and other mesoderm of the secondary embryo, showing determination of mesoderm during gastrulation. The graft attained a certain width beneath the host ectoderm and moved near to the animal pole of the host by late gastrula, and a neural plate, which had a similar width to the graft, was formed covering the graft. The volume of neural tissues of the secondary embryo at tail-bud stages was about half that of the normal embryo, while the volumes of notochord were comparable in each case. These data suggest that prechordal endomesoderm, rather than notochord, determines the limit of neural plate in the overlying ectoderm. Similar dorsal grafts were transplanted at early gastrula in Xenopus but did not form well developed secondary embryos, demonstrating that the timing and mechanisms of mesoderm formation in Xenopus are different from those in Cynops .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号