首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variant clones of Chinese hamster ovary (CHO) cells were selected for reduced adhesion to serum-coated tissue culture plates. These clones also displayed reduced adhesion to substrata composed of collagen layers coated with bovine serum or with fibronectin (cold-insoluble globulin). Wild-type (WT) and adhesion variant (ADv) cells grew at comparable rates in suspension culture, but the adhesion variants could not be grown in monolayer culture because of their inability to attach to the substratum. The adhesion deficit in these cells was not corrected by raising the concentration of divalent cations or of serum to levels 10-fold greater than those normally utilized in cell culture. However, both WT and ADv clones could adhere, spread, and attain a normal CHO morphology on substrata coated with concanavalin A or poly-L- lysine. In addition, the adhesion variants could attach to substrata coated with "footpad" material (substratum-attached material) derived from monolayers of human diploid fibroblasts or WT CHO cells. These observations suggest that the variant clones may have a cell surface defect that prevents them from utilizing exogeneous fibronectin as an adhesion-promoting ligand; however the variants seem to have normal cytoskeletal and metabolic capacities that allow them to attach and spread on substrata coated with alternative ligands. These variants should be extremely useful in studying the molecular basis of cell adhesion.  相似文献   

2.
A protocol has been developed for isolating cholesterol ester-deficient cells from the Chinese hamster ovary cell clone 25-RA. This cell line previously was shown to be partially resistant to suppression of cholesterogenic enzyme activities by 25-hydroxycholesterol and to accumulate a large amount of intracellular cholesterol ester when grown in medium containing 10% fetal calf serum (Chang, T. Y., and Limanek, J. S. (1980) J. Biol. Chem. 255, 7787-7795). The higher cholesterol ester content of 25-RA is due to an increase in the rate of cholesterol biosynthesis and low density lipoprotein receptor activity compared to wild-type Chinese hamster ovary cells, and not due to an abnormal acyl-CoA:cholesterol acyltransferase enzyme. The procedure to isolate cholesterol ester-deficient mutants utilizes amphotericin B, a polyene antibiotic known to bind to cholesterol and to form pore complexes in membranes. After incubation in cholesterol-free medium plus an inhibitor of endogenous cholesterol biosynthesis, 25-RA cells were found to be 50-500 times more sensitive to amphotericin B killing than were mutant cells containing reduced amounts of cholesterol ester. Twelve amphotericin B-resistant mutants were isolated which retained the 25-hydroxycholesterol-resistant phenotype. These mutants did not exhibit the perinuclear lipid droplets characteristic of 25-RA cells, and lipid analysis revealed a large (up to 40-fold) reduction in cellular cholesterol ester. The acyl-CoA:cholesterol acyltransferase activities of these cholesterol ester-deficient mutants were markedly lower than 25-RA when assayed in intact cells or in an in vitro reconstitution assay. The tightest mutant characterized, AC29, was found to have less than 1% of the parental acyl-CoA:cholesterol acyltransferase activity. These mutants all have reduced rates of sterol synthesis and lower low density lipoprotein receptor activity compared to 25-RA, probably as a consequence of their reduced enzyme activities. Cell fusion experiments revealed that the phenotypes of all the mutants examined are not dominant and that the mutants all belong to the same complementation group. We conclude that these mutants contain a lesion in the gene encoding acyl-CoA:cholesterol acyltransferase or in a gene encoding a factor needed for enzyme production.  相似文献   

3.
Autoradiography of colony replicas immobilized on filter paper was used to isolate a Chinese hamster ovary cell line deficient in incorporation of radiolabeled fucose into a trichloroacetic acid-insoluble fraction. This cell line, called 62.1, has the same growth rate at 37 degrees C as wild-type cells, but incorporates five times less fucose into acid-insoluble radioactivity. Chemical analysis of fucose bound to macromolecules also showed a fivefold reduction in the mutant. The fucoproteins of the mutant cell line differ qualitatively from those of wild-type cells as visualized by SDS gel electrophoresis fluorography; no differences were detected between total proteins as visualized by coomassie blue staining. The macromolecular sialic acid content of the mutant was somewhat higher than the wild type (20%). Studies of the synthesis of the glycoprotein of vesicular stomatitis virus in mutant and wild-type cells showed that the mutant is unable to synthesize complex-type N-linked oligosaccharides. Enzyme assays show that ths defect in the mutant is due to reduction in UDP-N-acetylglucosamine-glycoprotein N-acetyl-glucosaminyltransferase, a key enzyme in the assembly of complex glycopeptides. Hybridization studies have shown that mutant 62.1 has common mutations belonging to the same complementation group as mutant PhaR1-1. This latter mutant was previously isolated using lectin resistance by Stanley et al. (1975) and was also deficient in the above N-acetyl-glucosaminyltransferase.  相似文献   

4.
Cultured Chinese hamster ovary (CHO) cells possess an insulin-sensitive facilitated diffusion system for glucose transport. Mutant clones of CHO cells defective in glucose transport were obtained by repeating the selection procedure, which involved mutagenesis with ethyl methanesulfonate, radiation suicide with tritiated 2-deoxy-D-glucose, the polyester replica technique and in situ autoradiographic assaying for glucose accumulation. On the first selection, we obtained mutants exhibiting about half the glucose uptake activity of parental CHO-K1 cells and half the amount of a glucose transporter, the amount of which was determined by immunoblotting with an antibody to the human erythrocyte glucose transporter. The second selection, starting from one of the mutants obtained in the first-step selection, yielded a strain, GTS-31, in which both glucose uptake activity and the quantity of the glucose transporter were 10-20% of the levels in CHO-K1 cells, whereas the responsiveness of glucose transport to insulin, and the activities of leucine uptake and several glycolytic enzymes remained unchanged. GTS-31 cells grew slower than CHO-K1 cells at both 33 and 40 degrees C, and in a medium containing a low concentration of glucose (0.1 mM), the mutant cells lost the ability to form colonies. All the three spontaneous GTS-31 cell revertants, which were isolated by growing the mutant cells in medium containing 0.1 mM glucose, exhibited about half the glucose uptake activity and about half the amount of glucose transporter, as compared to in CHO-K1 cells, these characteristics being similar to those of the first-step mutant. These results indicate that the decrease in glucose uptake activity in strain GTS-31 is due to a mutation which induces a reduction in the amount of the glucose transporter, providing genetic evidence that the glucose transporter functions as a major route for glucose entry into CHO-K1 cells.  相似文献   

5.
Transferrin (Tf) receptor-variant Chinese hamster ovary cells have been isolated by selection for resistance to two Tf-toxin conjugates. The hybrid toxins contain Tf covalently linked to ricin A chain or a genetically engineered diphtheria toxin fragment. The Tf-receptor-variant (TRV) cells do not have detectable cell-surface Tf receptor; they do not bind fluorescein-Tf or 125I-Tf. TRV cells are at least 100-fold more resistant to the Tf-diphtheria toxin conjugate than are the parent cells. The TRV cells have retained sensitivity to native diphtheria toxin, indicating that the increased resistance to the conjugate is correlated with the loss of Tf binding. The endocytosis of fluorescein-labeled alpha 2-macroglobulin is normal in TRV cells, demonstrating that the defect does not pleiotropically affect endocytosis. Since these cells lack endogenous Tf receptor activity, they are ideally suited for studies of the functional expression of normal or altered Tf receptors introduced into the cells by cDNA transfection. One advantage of this system is that Tf binding and uptake can be used to monitor the behavior of the transfected receptor. A cDNA clone of the human Tf receptor has been transfected into TRV cells. In the stably expressing transfectants, the behavior of the human receptor is very similar to that of the endogenous Chinese hamster ovary cell Tf receptor. Tf binds to cell surface receptors, and is internalized into the para-Golgi region of the cell. Iron is released from Tf, and the apo-Tf and its receptor are recycled back to the cell surface. Thus, the TRV cells can be used to study the behavior of genetically altered Tf receptors in the absence of interfering effects from endogenous receptors.  相似文献   

6.
We made use of autoradiographic screening to isolate two Chinese hamster ovary (CHO) cell mutants deficient in peroxisomal dihydroxyacetonephosphate acyltransferase, a key enzyme for the biosynthesis of ether glycerolipids such as plasmalogens. Morphological analysis revealed no evidence of peroxisome in these mutants. Catalase was as active as in the normal cells but was not sedimentable. Pulse-chase radiolabeling experiments and cell-free translation of RNA demonstrated that acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system, was synthesized as the 75-kD form but was not converted to 53- and 22-kD mature components that were present in the wild-type CHO cells; rather, degradation was apparent. Peroxisomal thiolase was synthesized as in normal cells but remained as a larger, 44-kD precursor, whereas maturation to the 41-kD enzyme was detected in the wild-type cells. The peroxisomal 70-kD integral membrane protein was also equally synthesized, as in the wild-type cells, and was not degraded. These results suggest that assembly of the peroxisomes is defective in the mutants, whereas the synthesis of peroxisomal proteins appears to be normal. Cell-fusion studies revealed that the two mutants are recessive to the wild-type CHO cells and belong to different complementation groups. Thus, these mutants presumably contain different lesions in gene(s) encoding factor(s) required for peroxisome assembly.  相似文献   

7.
Recombinant human prorenin (rh-prorenin) was purified from supernatants of Chinese hamster ovary (CHO) cell line transfected with the cDNA for rh-prorenin by employing a simple two-step procedure which consisted of ammonium sulfate precipitation and immunoaffinity chromatography using a monoclonal antibody specific for the profragment of human prorenin. About 100-fold purification with 35% recovery was achieved after the two steps. Purified rh-prorenin migrated as a single protein band with apparent molecular weights of 46,000-47,000 and about 50,000 on SDS-PAGE and gel filtration (HPLC), respectively, although it consisted of multiple components (pI values, 5.6-6.4) that could be resolved by isoelectric focusing (IEF). The treatment of rh-prorenin with endo-beta-N-acetylglucosaminidase converted the rather broad protein band to a sharp band on SDS-PAGE and reduced the number of multiple pI peaks on IEF. Amino-terminal sequence analysis of both the purified rh-prorenin and rh-renin revealed Leu-Pro-Thr-Asp- and Leu-Thr-Leu-Gly-, respectively, which agreed with those predicted from the base sequences of their cDNA. These data suggested that microheterogeneity of rh-prorenin is due to the carbohydrate moiety, but not to the protein moiety. Purified rh-prorenin was almost inactive, but was cleaved at the carboxyl end of a dibasic pair Lys-2-Arg-1 by trypsin and converted to active renin. However, at the early stage during trypsin activation, new intermediate forms between rh-prorenin and rh-renin were formed, suggesting multiple activation steps of rh-prorenin in addition to the one step activation.  相似文献   

8.
M W McBurney  G F Whitmore 《Cell》1974,2(3):173-182
This article describes the selection of auxotrophic mutants of Chinese Hamster Ovary (CHO) cells and the genetic and biochemical characterization of two mutant lines. AUXB1 is auxotrophic for glycine, adenosine, and thymidine (GAT-), whereas AUXB3 requires only glycine and adenosine (GA-). These mutants do not complement since hybrid cells formed between them are also auxotrophic. Experiments concerned with the reversion of AUXB1 to prototrophy suggest that a single genetic lesion is responsible for the multiple auxotrophy. Biochemical analysis indicates that the multiple auxotrophy of both AUXB1 and AUXB3 is a result of low levels of intracellular folates in mutant cells. Phenotypic reversion to complete or partial prototrophy can be accomplished by growing these cells in high concentrations of folic or folinic acids. However, neither the folate transport nor the dihydrofolate reductase are defective in mutant cells. Chromatographic analysis of intracellular folate derivatives indicates that while folates extracted from wild type cells exist almost exclusively as polyglutamyl derivates (primarily pentaglutamates), AUXB1 cells contain primarily folate derivates in monoglutamyl form and AUXB3 cells contain mono-, di-, and perhaps some triglutamates. This observation suggests that the enzyme responsible for linking glutamate residues onto intracellular folate derivates is the site of the biochemical lesion in the mutant cells. Our results also suggest that a possible function of polyglutamyl residues is to aid cellular retention of folates.  相似文献   

9.
This paper reports the isolation and characterization of Chinese hamster ovary cell mutants defective in low density lipoprotein (LDL)-cholesterol trafficking. The parental cell line was 25-RA, which possesses LDL receptors and various cholesterogenic enzyme activities that are partially resistant to down regulation by exogenous sterols (Chang, T. Y., and J. S. Limanek. 1980. J. Biol. Chem. 255:7787-7795). Because these cells accumulate a large amount of intracellular cholesteryl ester when grown in medium containing 10% fetal calf serum, mutagenized populations of 25-RA cells were grown in the presence of a specific inhibitor of acyl-coenzyme A: cholesterol acyltransferase (ACAT), which depleted their cholesteryl ester stores. Without this cholesterol ester storage, 99% of 25-RA cells die after 5-d growth in cholesterol starvation medium, while the mutant cells, which accumulate free cholesterol intracellularly, survived. In two mutant clones chosen for characterization, activation of cholesteryl ester synthesis by LDL was markedly reduced in the mutant cells compared with 25-RA cells. This lack of activation of cholesterol ester synthesis in the mutant cells could not be explained by defective uptake and/or processing of LDL or by a decreased amount of ACAT, as determined by in vitro enzyme activity. Mutant cells grown in the presence of LDL contain numerous cytosolic particles that stain intensely with the fluorescent compound acridine orange, suggesting that they are acidic. The particles are also stained with filipin, a cholesterol-specific fluorescent dye. Indirect immunofluorescence with a monoclonal antibody specific for a lysosomal/endosomal fraction revealed a staining pattern that colocalized with the filipin signal. The mutant phenotype was recessive. The available evidence indicates that the mutant cells can take up and process LDL normally, but the hydrolyzed cholesterol accumulates in an acidic compartment, probably the lysosomes, where it can not be transported to its normal intracellular destinations.  相似文献   

10.
The Chinese hamster ovary cell line CHO-tsH1 is a temperature-sensitive leucyl-tRNA synthetase mutant that shows temperature-dependent regulation of the amino acid transport responsible for accumulating leucine, System L. At nonpermissive temperatures, CHO-tsH1 cells are unable to grow because they are unable to incorporate leucine into protein. As a result, System L activity is increased. We have isolated mutants from CHO-tsH1 that have constitutively de-repressed System L activity. These mutants are temperature-resistant as a result of increased intracellular steady-state accumulations of System L-related amino acids, which compensates for the defective synthetase activity. In this study, we have subjected one of these regulatory mutant cell lines (C11B6) to a tritium-suicide selection, in which L-[3H]leucine was used as a toxic substrate. Three mutant cell lines, C4B4, C5D9, and C9D9 that showed reduced System L transport activity were isolated. The decreases in the initial rates of System L transport activity lead to reduced steady-state accumulations of System L-related amino acids. In contrast to the parental cell line, C11B6, the transport-defective mutants are temperature-sensitive because the reduced intracellular pool of leucine can no longer compensate for the defective synthetase activity.  相似文献   

11.
12.
Three nitrogen mustard-sensitive lines of Chinese hamster ovary cells were isolated from mutagenized cultures using the procedure of Thompson et al. (1980). The lines, designated NM1, NM2 and NM3, were 2.1-, 17- and 6.8-fold more sensitive to nitrogen mustard, respectively, than their parent, wild-type, line as determined by the dose required to kill 90% of the cells, IC90. Patterns of cross-sensitivity to other DNA-damaging agents including ultraviolet light, cis-diamminedichloroplatinum, and other alkylating agents were determined for each line. Analysis of these results suggests that the phenotypes of the mutant lines are different from those lines reported previously.  相似文献   

13.
We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.  相似文献   

14.
Three heat-resistant mutant cell lines (78-1, 78-2, 78-3) were previously selected from Chinese hamster ovary cells. In this study, we investigated whether the differences in intrinsic thermal sensitivity result from alteration of stress protein levels or cellular structural changes. Although there was no significant difference in the levels of stress proteins, i.e., constitutive HSP70 in wild type and three heat-resistant mutant strains, there were marked differences in the amounts of vimentin among the cell lines. Two-dimensional gel electrophoresis and Western blot showed a 2.3-2.9-fold increase in the level of vimentin in the mutant cells under normal growth conditions. Northern blot also revealed higher amounts of vimentin mRNA in the mutant cells. Electron microscopy and immunofluorescence suggest that increased amounts of the vimentin-containing intermediate filaments are correlated with the heat-resistant phenotypes.  相似文献   

15.
Stable mutants resistant to an anticancer antibiotic, bleomycin-A2, were selected in Chinese hamster ovary (CHO) cell either spontaneously or after ethylmethane sulfonate mutagenesis. Fluctuation analysis showed that bleomycin resistance occurs in CHO at a rate of 6.50--6.58 x 10(-7) mutations per cell per generation. Bleomycin-A2-resistant cell lines exhibited increased resistance to bleomycin analogs--bleomycin-A5, -B2, -B4, and pepleomycin. Colchicine, mitomycin C, and ultraviolet light irradiation inhibited colony formation equally in CHO cells and in bleomycin-resistant mutants. Cell-cell hybridization tests showed that bleomycin-resistance behaves as a dominant trait. Bleomycin-inactivating activity in the mutant cell extracts was three to fourfold higher than that in extracts of the parental CHO cell.  相似文献   

16.
Stable clones selected for resistance to tunicamycin (TM) have been isolated from Chinese Hamster Ovary (CHO) cells. The TMR phenotype is stable for more than nine months in the absence of the drug. The morphology of TMR mutant varies from epitheloid to abnormally elongate. The mutants do not display cross-resistance for ConA but are slightly cross-resistant to PHA. Biochemically labeled membrane proteins and glycoprotein of Vesicular stomatitis virus (VSV) grown in the TMR mutants revealed that the incorporation of radioactive glucosamine was markedly reduced in the mutants. The results indicate that TMR cells are a novel type of membrane mutant.  相似文献   

17.
We developed an improved method for isolation of peroxisome biogenesis-defective somatic animal cell mutants, using a combination of green fluorescent protein (GFP) expression and the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) selection method. We used TKaG1 and TKaG2 cells, the wild-type Chinese hamster ovary (CHO) cells, CHO-K1, that had been stably transfected with cDNAs each encoding rat Pex2p as well as GFP tagged at the C-terminus with peroxisome targeting signal type 1 (PTS1) or N-terminally PTS2-tagged GFP. P9OH/UV-resistant cell colonies were examined for intracellular location of GFP on unfixed cells, by fluorescence microscopy. Seven each of the mutant cell clones isolated from TKaG1 and TKaG2 showed cytosolic GFP-PTS1 and PTS2-GFP, respectively, indicating the defect in peroxisome assembly. By transfection of PEX2, PEX5, PEX6, and PEX12 cDNAs and cell fusion analysis between the CHO cell mutants, five different complementation groups (CGs) were identified. Two mutant clones, ZPG207 and ZPG208, belonged to novel CGs. Further CG analysis using fibroblasts from patients with peroxisome biogenesis disorders, including rhizomelic chondrodysplasia punctata (RCDP), revealed that ZPG208 belonged to none of human CGs. ZPG207 was classified into the same CG as RCDP. Taken together, ZPG208 is in a newly identified, the 12th, CG in peroxisome-deficient CHO mutants reported to date and represents a novel mammalian CG.  相似文献   

18.
Transfection of Chinese hamster ovary (CHO) cells with a plasmid containing the cDNA for human preprorenin has provided cell lines that secrete 15 mg of native prorenin per liter of culture medium. Tryptic activation of the prorenin occurs by selective cleavage of the Arg66-Leu67 bond (numbering as in preprorenin). The renin product, purified in a single step and in high yield by affinity chromatography, is fully stable for as long as 8 months when stored in solution at 4 degrees C and pH 6.5. Purity of the renin was judged to be greater than 95% by gel electrophoresis, compositional and N-terminal sequence analyses, and specific enzyme activity. An important aspect of the present work is the development of a direct assay for renin which permits accurate and reproducible evaluation of enzyme units and kinetic parameters. Application of methods described herein, combined with appropriate scale-up fermentation capabilities, provides the means for generating gram quantities of human renin and its zymogen.  相似文献   

19.
A procedure is described to select mutants of Chinese hamster ovary cells that are conditionally defective for the cell-surface expression of integral membrane glycoproteins, including the hemagglutinin (HA) of influenza virus. Using a combination of cell sorting and biochemical screening, seven cell lines were obtained that express more cell-surface HA at 32 degrees C than at 39 degrees C. The production of infectious vesicular stomatitis virus, whose growth requires insertion of an integral membrane protein into the plasma membrane, was also temperature conditional in the majority of these mutant cell lines. Five of the lines synthesized apparently normally core-glycosylated HA at the elevated temperature but the protein was neither displayed on the cell surface nor accumulated intracellularly. In these cell lines, little or no terminally glycosylated HA molecules were observed after synthesis at 39 degrees C. By contrast, the core glycosylation of HA and several other integral membrane proteins was abnormal in the remaining two cell lines at both permissive and restrictive temperatures, due to a lesion in a cellular gene(s) that affects the formation of and/or the addition of mannose-rich oligosaccharide chains to newly synthesized polypeptides. Although HA was transported to the plasma membrane at both 32 and 39 degrees C, it did not accumulate on the cell surface at the higher temperature, apparently because of an increased rate of degradation.  相似文献   

20.
An X-ray-sensitive Chinese hamster ovary cell line was isolated by means of a semi-automated procedure in which mutagenized cells formed colonies on top of agar, were X-irradiated, and were photographed at two later times. We compared the photographs to identify colonies that displayed significant growth arrest. One of the colonies identified in this manner produced a stable line (irs1SF) that is hypersensitive to ionizing radiation. The X-ray dose at which 10% of the population survives (D10) is 2.25 Gy for irs1SF and 5.45 Gy for the parental line. The new mutant is also moderately sensitive to ethyl methanesulfonate. irs1SF performs only half as much X-ray-induced repair replication as the parental line, indicating a defect in excision repair. This defect is believed to be the primary cause of the line's radiosensitivity. Although irs1SF repairs DNA double-strand breaks at a normal rate, it repairs single-strand breaks more slowly than normal. irs1SF has an elevated number of spontaneous chromatid aberrations and produces significantly higher numbers of X-ray-induced chromatid aberrations after exposure during the G1 phase of the cell cycle. The line is hypomutable, with X-ray exposure inducing only one-third as many 6-thioguanine-resistant colonies as the parental line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号