首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human African trypanosomiasis (HAT) is a disease caused by Kinetoplastid infection. Serological tests are useful for epidemiological surveillance. The aim of this study was to develop a multiplex serological assay for HAT to assess the diagnostic value of selected HAT antigens for sero-epidemiological surveillance.We cloned loci encoding eight antigens from Trypanosoma brucei gambiense, expressed the genes in bacterial systems, and purified the resulting proteins. Antigens were subjected to Luminex multiplex assays using sera from HAT and VL patients to assess the antigens' immunodiagnostic potential. Among T. b. gambiense antigens, the 64-kDa and 65-kDa invariant surface glycoproteins (ISGs) and flagellar calcium binding protein (FCaBP) had high sensitivity for sera from T. b. gambiense patients, yielding AUC values of 0.871, 0.737 and 0.858 respectively in receiver operating characteristics (ROC) analysis. The ISG64, ISG65, and FCaBP antigens were partially cross-reactive to sera from Trypanosoma brucei rhodesiense patients. The GM6 antigen was cross-reactive to sera from T. b. rhodesiense patients as well as to sera from VL patients. Furthermore, heterogeneous antibody responses to each individual HAT antigen were observed. Testing for multiple HAT antigens in the same panel allowed specific and sensitive detection. Our results demonstrate the utility of applying multiplex assays for development and evaluation of HAT antigens for use in sero-epidemiological surveillance.  相似文献   

2.
This paper is a review of the current situation of the treatment of human African trypanosomiasis. The existing approved drugs are old, toxic and/or expensive. Therapeutic failures are common. Several factors may contribute to the problems of chemotherapy, including differences in the epidemiology of the disease, difficulties in the diagnosis and staging of the infection, availability, distribution and pharmacologic properties of drugs, standardization of treatment regimens, response to therapy, follow-up period, and relapses and clinical trials. The new therapeutic approaches include the development and approval of new drugs, the use of new therapeutic regimens, the study of drug combinations, and the development of new formulations.  相似文献   

3.
Control of human African trypanosomiasis (HAT) is dependent on accurate diagnosis and treatment of infected patients. However, sensitivities of tests in routine use are unsatisfactory, due to the characteristically low parasitaemias in naturally infected individuals. We have identified a conserved sequence in the repetitive insertion mobile element (RIME) of the sub-genus Trypanozoon and used it to design primers for a highly specific loop-mediated isothermal amplification (LAMP) test. The test was used to analyse Trypanozoon isolates and clinical samples from HAT patients. The RIME LAMP assay was performed at 62 degrees C using real-time PCR and a water bath. DNA amplification was detectable within 25min. All positive samples detected by gel electrophoresis or in real-time using SYTO-9 fluorescence dye could also be detected visually by addition of SYBR Green I to the product. The amplicon was unequivocally confirmed through restriction enzyme NdeI digestion, analysis of melt curves and sequencing. The analytical sensitivity of the RIME LAMP assay was equivalent to 0.001 trypanosomes/ml while that of classical PCR tests ranged from 0.1 to 1000 trypanosomes/ml. LAMP detected all 75 Trypanozoon isolates while TBR1 and two primers (specific for sub-genus Trypanozoon) showed a sensitivity of 86.9%. The SRA gene PCR detected 21 out of 40 Trypanosoma brucei rhodesiense isolates while Trypanosoma gambiense-specific glycoprotein primers (TgsGP) detected 11 out of 13 T. b. gambiense isolates. Using clinical samples, the LAMP test detected parasite DNA in 18 out of 20 samples which included using supernatant prepared from boiled blood, CSF and direct native serum. The sensitivity and reproducibility of the LAMP assay coupled with the ability to detect the results visually without the need for sophisticated equipment indicate that the technique has strong potential for detection of HAT in clinical settings. Since the LAMP test shows a high tolerance to different biological substances, determination of the appropriate protocols for processing the template to make it a user-friendly technique, prior to large scale evaluation, is needed.  相似文献   

4.

Background

Human African trypanosomiasis (HAT) or sleeping sickness leads to a complex neuropsychiatric syndrome with characteristic sleep alterations. Current division into a first, hemolymphatic stage and second, meningoencephalitic stage is primarily based on the detection of white blood cells and/or trypanosomes in the cerebrospinal fluid. The validity of this criterion is, however, debated, and novel laboratory biomarkers are under study. Objective clinical HAT evaluation and monitoring is therefore needed. Polysomnography has effectively documented sleep-wake disturbances during HAT, but could be difficult to apply as routine technology in field work. The non-invasive, cost-effective technique of actigraphy has been widely validated as a tool for the ambulatory evaluation of sleep disturbances. In this pilot study, actigraphy was applied to the clinical assessment of HAT patients.

Methods/Principal Findings

Actigraphy was recorded in patients infected by Trypanosoma brucei gambiense, and age- and sex-matched control subjects. Simultaneous nocturnal polysomnography was also performed in the patients. Nine patients, including one child, were analyzed at admission and two of them also during specific treatment. Parameters, analyzed with user-friendly software, included sleep time evaluated from rest-activity signals, rest-activity rhythm waveform and characteristics. The findings showed sleep-wake alterations of various degrees of severity, which in some patients did not parallel white blood cell counts in the cerebrospinal fluid. Actigraphic recording also showed improvement of the analyzed parameters after treatment initiation. Nocturnal polysomnography showed alterations of sleep time closely corresponding to those derived from actigraphy.

Conclusions/Significance

The data indicate that actigraphy can be an interesting tool for HAT evaluation, providing valuable clinical information through simple technology, well suited also for long-term follow-up. Actigraphy could therefore objectively contribute to the clinical assessment of HAT patients. This method could be incorporated into a clinical scoring system adapted to HAT to be used in the evaluation of novel treatments and laboratory biomarkers.  相似文献   

5.
Papadopoulos et al. recently reported the discovery of a diagnostic serum proteomic signature for human African trypanosomiasis (HAT), using a combination of surface-enhanced laser desorption-ionization time-of-flight (SELDI-TOF) mass spectrometry and data-mining algorithms. This novel approach, coupled with biochemical characterization of the proteins that contribute to the signature, provides powerful new tools for the development of improved diagnostic tests, disease staging and identification of potential novel drug targets in HAT.  相似文献   

6.
African trypanosomiases, including the human disease referred to as ‘sleeping sickness’ and the animal diseases such as nagana, surra and dourine, are neglected vector-borne diseases that after years of research still need improved diagnosis and chemotherapy. Advances in proteomics offer new tools to define biomarkers, whose expression may reflect host–parasite interactions occurring during the infection. In this review, the authors first describe the current diagnostic tools used to detect a trypanosome infection during field surveys, and then discuss their interests, limits and further evolutions. The authors also report on the contribution of molecular diagnostics, and the recent advances and developments that make it suitable for fieldwork. The authors then explore the recent uses of proteomics technology to define host and parasite biomarkers that allow detection of the infection, the power and constraints of the technology. The authors conclude by discussing the urgent need to use the biomarkers discovered in order to develop tools to improve trypanosomiasis control in the near future.  相似文献   

7.
Three of the four currently approved drugs for the treatment of African trypanosomiasis (sleeping sickness) were developed over 50 years ago. All of the current therapies are unsatisfactory for various reasons, including unacceptable toxicity, poor efficacy, undesirable route of administration, and drug resistance. The possible modes of action of these drugs are briefly reviewed, as are the possible mechanisms of resistance. The intermediate and long-term prospects for the development of safer, effective drugs are discussed.  相似文献   

8.
9.
10.
Chemotherapy of human African trypanosomiasis is problematic because of the high frequency of severe adverse events, the long duration and high cost of treatment, and an increasing number of treatment-refractory cases. New cost-efficient, easy-to-use drugs are urgently needed. Whereas basic research on potential drug targets is anchored in academia, the complex, highly regulated and very expensive process of preclinical and clinical drug development is almost exclusively in the hands of pharmaceutical companies. Jennifer Keiser, August Stich and Christian Burri here review, from the angle of industrial drug research and development, the past ten years of research activities at different stages of the development of trypanocidal drugs, and assess future prospects. The absence of compounds in clinical development Phases I-III indicates no new drugs will become available in the next few years.  相似文献   

11.
High systemic drug toxicity and increasing prevalence of drug resistance hampers efficient treatment of human African trypanosomiasis (HAT). Hence, development of new highly specific trypanocidal drugs is necessary. Normal human serum (NHS) contains apolipoprotein L-I (apoL-I), which lyses African trypanosomes except resistant forms such as Trypanosoma brucei rhodesiense. T. b. rhodesiense expresses the apoL-I-neutralizing serum resistance-associated (SRA) protein, endowing this parasite with the ability to infect humans and cause HAT. A truncated apoL-I (Tr-apoL-I) has been engineered by deleting its SRA-interacting domain, which makes it lytic for T. b. rhodesiense. Here, we conjugated Tr-apoL-I with a single-domain antibody (nanobody) that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG) of trypanosomes to generate a new manmade type of immunotoxin with potential for trypanosomiasis therapy. Treatment with this engineered conjugate resulted in clear curative and alleviating effects on acute and chronic infections of mice with both NHS-resistant and NHS-sensitive trypanosomes.  相似文献   

12.
Human African trypanosomiasis, also known as sleeping sickness, is caused by protozoan parasites of the genus Trypanosoma, and is a major cause of human mortality and morbidity. The East African and West African variants, caused by Trypanosma brucei rhodesiense and Trypanosoma brucei gambiense, respectively, differ in their presentation but the disease is fatal if untreated. Accurate staging of the disease into the early haemolymphatic stage and the late encephalitic stage is critical as the treatment for the two stages is different. The only effective drug for late stage disease, melarsoprol, which crosses the blood-brain barrier, is followed by a severe post-treatment reactive encephalopathy in 10% of cases of which half die. There is no current consensus on the diagnostic criteria for CNS involvement and the specific indications for melarsoprol therapy also differ. There is a pressing need for a quick, simple, cheap and reliable diagnostic test to diagnose Human African trypanosomiasis in the field and also to determine CNS invasion. Cerebrospinal fluid and plasma analyses in patients with Human African trypanosomiasis have indicated a role for both pro-inflammatory and counter-inflammatory cytokines in determining the severity of the meningoencephalitis of late stage disease, and, at least in T. b. rhodesiense infection, the balance of these opposing cytokines may be critical. Rodent models of Human African trypanosomiasis have proved very useful in modelling the post-treatment reactive encephalopathy of humans and have demonstrated the central role of astrocyte activation and cytokine balances in determining CNS disease. Such animal models have also allowed a greater understanding of the more direct mechanisms of trypanosome infection on CNS function including the disruption of circadian rhythms, as well as the immunological determinants of passage of trypanosomes across the blood-brain barrier.  相似文献   

13.
A series of naphthoquinone derivatives has been synthesized and tested for its biological activity against human African trypanosomiasis. The use of reverse micellar medium not only enhanced the conversion rate, but also showed selectivity towards mono-coupled product in aryl chloride–aniline coupling reactions. Two derivatives of naphthoquinone (9b and 9c) exhibited potent activity against Trypanosoma brucei in vitro with low cytotoxicity.  相似文献   

14.
Human African trypanosomiasis, or sleeping sickness, is still a worrying problem in Africa. Sleeping sickness is a disease for which a systematic monitoring is necessary, particularly for the trypanosomiasis caused by Trypanosoma brucei gambiense, which is characterized by a long asymptomatic stage. In the absence of specific clinical signs, mass screening of populations remains the only way to control the disease and to avoid its spreading. The lack of sensitivity and specificity of the diagnosis tests classically used led to the development of molecular tools. PCR amplification of parasite specific sequences has considerably improved the diagnostic of the parasitic infection, the stage diagnosis as well as the post-therapeutic follow-up. But there are limits with a use in routine and research is still necessary to make PCR a real tool for control of sleeping sickness.  相似文献   

15.
Efficient synthetic routes have been developed for the preparation of two new polyazamacrocycles tagged with structural motifs recognised by the Trypanosoma brucei P2 aminopurine transporter. Biological testing of these compounds showed highly selective anti-protozoal activity against trypanosomes.  相似文献   

16.
17.
A series of compounds containing 2-substituted imidazoles has been synthesized from imidazole and tested for its biological activity against human African trypanosomiasis (HAT). The 2-substituted 5-nitroimidazoles such as fexinidazole (7a) and 1-[4-(1-methyl-5-nitro-1H-imidazol-2-ylmethoxy)-pyridin-2-yl-piperazine (9e) exhibited potent activity against T. brucei in vitro with low cytotoxicity and good solubility. The presence of the NO2 group at the 5-position of the imidazole ring in 2-substituted imidazoles is the crucial factor to inhibit T. brucei.  相似文献   

18.
A series of halo-nitrobenzamide were synthesized and evaluated for their ability to block proliferation of Trypanosoma brucei brucei. A number of these compounds had significant activity against the parasite, particularly 2-chloro-N-(4-chlorophenyl)-5-nitrobenzamide 17 which exhibited low micromolar inhibitory potency against T. brucei and selectivity towards both malaria and mammalian cells.  相似文献   

19.

Background

Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda.

Methodology and Principal Findings

The sequence of tests in each algorithm was programmed into a probabilistic model, informed by distributions of the sensitivity, specificity and staging accuracy of each test, constructed based on a literature review. The accuracy of algorithms was estimated in a baseline scenario and in a worst-case scenario introducing various near worst-case assumptions. In the baseline scenario, sensitivity was estimated as 85–90% in all but one algorithm, with specificity above 99.9% except for the Republic of Congo, where CATT serology was used as independent confirmation test: here, positive predictive value (PPV) was estimated at <50% in realistic active screening prevalence scenarios. Furthermore, most algorithms misclassified about one third of true stage 1 cases as stage 2, and about 10% of true stage 2 cases as stage 1. In the worst-case scenario, sensitivity was 75–90% and PPV no more than 75% at 1% prevalence, with about half of stage 1 cases misclassified as stage 2.

Conclusions

Published evidence on the accuracy of widely used tests is scanty. Algorithms should carefully weigh the use of serology alone for confirmation, and could enhance sensitivity through serological suspect follow-up and repeat parasitology. Better evidence on the frequency of low-parasitaemia infections is needed. Simulation studies should guide the tailoring of algorithms to specific scenarios of HAT prevalence and availability of control tools.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号