首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interaction of Glutoxime with P-glucoprotein (Pgp), a multiple drug resistance marker, as well as the Glutoxime impact on doxorubicin intracellular accumulation were investigated. It was shown that the Glutoxime effect on the Pgp expressing tumor cells resulted in a decrease of the cell specific fluorescence intensity, conditioned by binding of the monoclonal antibodies to the transport protein. That was evident of Glutoxime competition with the monoclonal antibodies for binding to Pgp and indicative of the modificator interaction with the transport protein. The effect was proved with the use of two cultures of human tumor cells of different histogenesis, i.e., the cells of Jurkat T-cellular leukemia and nonsmall cell lung cancer A549. Inhibition of the Pgp functional activity by Glutoxime was also demonstrateds. The authors suggested that it could be caused by direct competition of the modificator with the antitumor agent for binding to the precipitation sites on Pgp. Glutoxime could be considered as an inhibitor of multiple drug resistance associated with the Pgp function.  相似文献   

2.
目的 研究氨基糖苷类高水平耐药(high-level aminoglycoside-resistant,HLAR)肠球菌临床株表面蛋白基因(esp)、Ⅰ类整合酶基因(IntI1)、耐氯霉素肠球菌乙酰转移酶基因(cat)等三种耐药基因的流行情况及肠球菌对常见抗菌药物的耐药情况.方法 对53株肠球菌进行菌株鉴定和药敏试验,用PCR法扩增肠球菌esp基因、IntI1基因和cat基因,阳性产物送测序并对序列进行分析.结果 53株HLAR肠球菌中,esp基因阳性率为28.3%,Ⅰ类整合酶基因阳性率为49.1%,没有检测到cat基因.菌株对多种抗菌药物的耐药率为:氨苄西林62.3%、环丙沙星75.5%、红霉素94.3%、高水平庆大霉素75.5%、高水平链霉素73.6%、喹努普汀/达福普汀32.1%、四环素66.0%、万占霉素1.9%、利奈唑胺0.结论 肠球菌对常见抗菌药物存在不同程度的耐药,esp基因和IntI1基因与肠球菌耐药性密切相关.  相似文献   

3.
4.
Iron is an essential inorganic element for various cellular events. It is directly associated with cell proliferation and growth; therefore, it is expected that iron metabolism is altered in tumor cells which usually have rapid growth rates. The studies on iron metabolism of tumor cells have shown that tumor cells necessitated higher concentrations of iron and the genes of iron uptake proteins were highly over-expressed. However, there are limited number of studies on overall iron metabolism in drug-resistant tumor cells. In this article, we evaluated the studies reporting the relationship between drug resistance and iron metabolism and the utilization of this knowledge for the reversal of drug resistance. Also, the studies on iron-related cell death mechanism, ferroptosis, and its relation to drug resistance were reviewed. We focus on the importance of iron metabolism in drug-resistant cancer cells and how alterations in iron metabolism participate in drug-resistant phenotype.  相似文献   

5.
Topoisomerase II is a target of alkaloid, anthracycline and related antitumor agents. Two types of multiple drug resistance are associated with these enzymes. In classical (typical) multidrug resistance, inhibitors are actively effluxed from cells by P-glycoprotein. In atypical multidrug resistance, topoisomerase II is either reduced in cellular content or mutated to a form that does not interact with inhibitors. Because cytotoxicity of most antineoplastic topoisomerase II inhibitors is directly related to the number of active topoisomerase II molecules, a reduction in this number leads to resistance. In the topoisomerase II mechanism, through which the DNA linking number is altered, DNA double strands are cleaved, and the termini transiently bound covalently (5) or noncovalently (3) to the enzyme while a second double strand is passed through the break in the first. This transition state complex then decays to enzyme and DNA of altered linking number. Most cytotoxic topoisomerase II inhibitors stabilize these reaction intermediates as ternary complexes, which are converted to lethal lesions when cells attempt to utilize the damaged DNA as templates. Toxicity is related to topoisomerase II content as well as to drug concentration. Thus, multidrug resistance results from either 1) decreasing cellular content of the inhibitor by P-glycoprotein (typical) or 2) decreasing cellular content and/or activity of the target, topoisomerase II, as, for example, when its content or activity is modulated downward by decreased expression, deactivation, or by mutations to the TopII gene, producing an enzyme that reacts poorly with inhibitors (atypical). Mixed types,i.e., both typical and atypical, are known. Attempts to abrogate or prevent both typical and atypical multidrug resistance to topoisomerase II inhibitors have been described.Abbreviations atMDR atypical multidrug resistance - kDa kilodaltons - MDR multidrug resistance - Pgp P-glycoprotein - TOPO II topoisomerase II  相似文献   

6.
7.
8.
9.
The refractory nature of many human cancers to multi-agent chemotherapy is termed multidrug resistance (MDR). In the past several decades, a major focus of clinical and basic research has been to characterize the genetic and biochemical mechanisms mediating this phenomenon. To provide model systems in which to study mechanisms of multidrug resistance,in vitro studies have established MDR cultured cell lines expressing resistance to a broad spectrum of unrelated drugs. In many of these cell lines, the expression of high levels of multidrug resistance developed in parallel to the appearance of cytogenetically-detectable chromosomal anomalies resulting from gene amplification. This review describes cytogenetic and molecular-based studies that have characterized DNA amplification structures in MDR cell lines and describes the important role gene amplification played in the cloning and characterization of the mammalian multidrug resistance genes (mdr). In addition, this review discusses the genetic selection generally used to establish the MDR cell lines, and how drug selections performed in transformed cell lines generally favor the genetic process of gene amplification, which is still exploited to identify drug resistance genes that may play an important role in clinical MDR.  相似文献   

10.
A methicillin-susceptible, novobiocin-resistant strain of Staphylococcus aureus (RN2677; methicillin MIC, 0.8 micrograms/ml) was transformed with DNA prepared from highly and homogeneously methicillin-resistant S. aureus strains (methicillin MIC, greater than or equal to 400 micrograms/ml) or from heterogeneous strains in which the majority of cells had a low level of resistance (methicillin MIC, 6.3 micrograms/ml). All methicillin-resistant transformants showed low and heterogeneous resistance (methicillin MIC, 3.1 micrograms/ml) irrespective of the resistance level of DNA donors. All transformants examined produced normal amounts of the low-affinity penicillin-binding protein (PBP) 2a, and methicillin resistance and the capacity to produce PBP 2a showed the same degree of genetic linkage to the novobiocin resistance marker with both homogeneous and heterogeneous DNA donors. Next, we isolated a methicillin-susceptible mutant from a highly and homogeneously resistant strain which had a Tn551 insertion near or within the PBP 2a gene and thus did not produce PBP 2a. With this mutant used as the recipient, genetic transformation of the methicillin resistance gene was repeated with DNA isolated either from highly and homogeneously resistant strains or from heterogeneous (low-resistance) strains. All transformants obtained expressed high and homogeneous resistance and produced PBP 2a irrespective of the resistance level of the DNA donors. Our findings suggest that (i) the methicillin resistance locus is identical to the structural gene for PBP 2a, (ii) although the ability to produce PBP 2a is essential for resistance, the MICs for the majority of cells are not related to the cellular concentration of PBP 2a, and (iii) high MICs and homogeneous expression of resistance require the products of other distinct genetic elements as well.  相似文献   

11.
In 4 S. marcescens polyresistant strains isolated from patients conjugative plasmids transferred to Escherichia coli have been detected. Two of these strains carry each one plasmid which codes resistance to 10 different antibiotics, including aminoglycosides which rarely occur in our country, and belongs to group IncC. The third strain is the host of 2 plasmids. One of them is similar to the above-mentioned 2 plasmids with respect to the incompatibility group and a set of markers, but additionally codes resistance to cephalosporins; the second plasmid has been determined as belonging to group IncM, unstable and capable of rendering the cells highly resistant only to aminoglycosides. And, finally, the fourth strain also carries 2 plasmids: one of them is unstable and belongs, supposedly, to group IncI alpha, and the second plasmid is stable and belongs to group IncM. The plasmid of group IncI alpha differs from all other plasmids of our Serratia by its capacity of rendering the cells highly resistant to chloramphenicol.  相似文献   

12.
《Genomics》2022,114(1):125-137
Bladder cancer has a high incidence worldwide accompanies by high recurrent rate after treatment. The emergence of primary or acquired chemotherapy resistance leads to poor efficacy in many cases. To explore the underlying mechanisms of drug resistance, we firstly established a drug-resistant cell model T24/THP by repeated exposure of T24 cells to pirarubicin (THP) whose concentration increases gradually. Non-targeted metabolomics was performed to identify metabolic changes and key metabolism pathways variance in T24/THP cells. Pathway enrichment analysis demonstrated that the arginine and proline metabolic pathway was the most significantly changed pathway, where two representative members of polyamine, putrescine and spermidine were remarkably down regulated in T24/THP. Subsequent experiments further confirmed that ornithine decarboxylase (ODC1) and spermidine synthase (SRM), the key enzymes involved in the synthesis of these compounds, also showed a stable low expression in T24/THP. However, knocking down of ODC1 and SRM sensitized cells to chemotherapy treatment while overexpression of these two enzymes enhances chemotherapy resistance. This leaded to the point that ODC1 and SRM themselves are more likely to promote the drug resistance, which appears to contradict their low expression in T24/THP. We hypothesize that their diminished levels were due to the declined activity of genes upstream. According to this line of thought, we found that c-MYC was also down-regulated in T24/THP and its content could be significantly affected by drug administration. In addition, c-MYC could not only regulate the expression levels of ODC1 and SRM but also influence drug resistance in T24/THP. In conclusion, alterations in gene expression of ODC1 and SRM in drug resistance cell line is probably mediated by some upstream regulators rather than antineoplastic agents alone. Exploration of upstream signals and research on detailed regulatory mechanism, thereby understanding the actual role of c-MYC and polyamine in response to chemotherapy, can become a potential field direction to overcome drug resistance in bladder cancer.  相似文献   

13.
Chen X  Wang Y  Xia H  Wang Q  Jiang X  Lin Z  Ma Y  Yang Y  Hu M 《Molecular biology reports》2012,39(6):6707-6714
The recent studies indicated that the epithelial cell adhesion molecule E-cadherin is a well-recognized molecule that is important in cell adhesion. To further investigate the molecular basis of this notion, we used small-interfering RNA to inhibit E-cadherin function and found that loss of E-cadherin promoted Colorectal cancer cell growth, invasion and drug resistance through induction of β-catenin nuclear translocation and epithelial-to-mesenchymal transition. Further analysis of E-cadherin expression with clinicopathologic parameters showed that E-cadherin expression decreased in Colorectal cancer patients who developed liver metastasis (P = 0.043). These findings indicate that E-cadherin loss in tumors contributes to progression and metastatic dissemination. Thus, E-cadherin can act as a central modulator of the cell biological phenotypes and a potential prognostic marker in Colorectal cancer.  相似文献   

14.
Multidrug resistance (MDR) is a major problem in cancer chemotherapy. As P-glycoprotein is the key molecule in MDR, many investigators have constructed anti-P-glycoprotein monoclonal antibodies (MAbs). Those antibodies, including MRK16 and C219, were used for elucidation of the mechanism of MDR and for overcoming of MDR. This article describes the characterization of the antibodies against the P-glycoprotein and other proteins of multidrug-resistant tumor cells, and discusses the therapeutic implication of the antibodies.Abbreviation ADCC antibody-dependent cell-mediated cytotoxicity  相似文献   

15.
16.
Previous studies have shown a role for multiple drug resistance proteins in protecting the fetus from a limited number of teratogens. We have expanded the number of proteins and teratogens examined by comparing the influence of the mdr1a and mdr2 proteins on teratogen-induced orofacial clefting using their respective knockouts in crosses with the A/J, high susceptibility strain. Western blots identified the presence of mdr1a and possibly mdr2 in the placenta and fetus. The mdr1a knockout, on its unique genetic background showed lower, similar, and higher incidences of clefting compared to A/J for Dilantin, hydrocortisone (HC), and 6-aminonicotinamide (6-AN), respectively. The mdr2 knockout did not affect 6-AN clefting when compared to A/J. In reciprocal crosses, when corrected for increased spontaneous clefting, maternally inherited A/J susceptibility genes predominated over the effects of the maternal absence of mdr1a (with 6-AN). Unlike mdr1a, which had a direct effect in the fetus as shown by genotyping of affected versus unaffected fetuses, an effect of mdr2 in the fetus was not found. The mdr1a knockout was backcrossed to the A/J inbred strain for 11 generations (congenics) to eliminate genetic background effects. Reciprocal crosses showed no maternal effect from the lack of mdr1a, confirming that mdr1a expression in the fetus, rather than the placenta, protects the fetus from teratogens. Mdr2 seems not to be involved in the protection of the fetus from teratogens.  相似文献   

17.
Conclusion Considerable progress has been made toward understanding some of the molecular mechanisms underlying MDR in cancer cells in vitro, and sensitive techniques such as immunocytochemistry and RT-PCR indicate that these mechanisms may also play a role in resistance in human cancers. It does seem, however, that there are many different patterns and mechanisms of MDR, not all of which are currently well understood. Identification of chemicals which, at non-toxic doses, circumvent MDR, and of new drugs to which MDR cells are not cross resistant, remains a priority in this area of research. Also, it is important to remember that, although inherent resistance at the molecular level is possibly the most serious barrier to successful chemotherapy, other issues including tumor cell kinetics, drug metabolism, drug penetration within the tumor, and side effects on normal tissues are also critical factors in determining how an individual may respond to chemotherapy.  相似文献   

18.
19.
20.
Drug resistance mediated by integral membrane transporters is an important mode of cellular resistance to cytotoxic agents across all classes of living organisms. Gram-positive bacteria, such as staphylococcal species, are not encapsulated by a selective outer membrane permeability barrier. Therefore, these organisms often employ integral membrane drug transport systems to maintain cellular concentrations of antimicrobials at subtoxic levels. Staphylococcal species, including the opportunistic human pathogen Staphylococcus aureus, encode a multitude of drug exporters, encompassing transporters from each of the five currently recognized families of bacterial drug resistance transporters. A number of these transporters are chromosomally encoded and allow the host cell to realize clinically significant levels of drug resistance after minor mutations to regulatory regions. Others are plasmid-encoded and can be easily passed between staphylococcal strains and species, or acquired from other Gram-positive genera. In combination, staphylococcal drug transporters potentiate resistance to a vast array of antimicrobial compounds, including macrolide, quinolone, tetracycline and streptogramin antibiotics, as well as a broad range of biocides, such as quaternary ammonium compounds, biguanidines and diamidines. An understanding of the genetic and molecular properties of drug transporters will lead to effective treatments of staphylococcal infections. Here we provide a detailed review of the active drug transporters of the staphylococci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号