首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parenchymal lung inflammation and airway and alveolar epithelial cell apoptosis are associated with cigarette smoke exposure (CSE), which contributes to chronic obstructive pulmonary disease (COPD). Epidemiological studies indicate that people exposed to chronic cigarette smoke with or without COPD are more susceptible to influenza A virus (IAV) infection. We found increased p53, PAI-1 and apoptosis in AECs, with accumulation of macrophages and neutrophils in the lungs of patients with COPD. In Wild-type (WT) mice with passive CSE (PCSE), p53 and PAI-1 expression and apoptosis were increased in AECs as was lung inflammation, while those lacking p53 or PAI-1 resisted AEC apoptosis and lung inflammation. Further, inhibition of p53-mediated induction of PAI-1 by treatment of WT mice with caveolin-1 scaffolding domain peptide (CSP) reduced PCSE-induced lung inflammation and reversed PCSE-induced suppression of eosinophil-associated RNase1 (EAR1). Competitive inhibition of the p53-PAI-1 mRNA interaction by expressing p53-binding 3’UTR sequences of PAI-1 mRNA likewise suppressed CS-induced PAI-1 and AEC apoptosis and restored EAR1 expression. Consistent with PCSE-induced lung injury, IAV infection increased p53, PAI-1 and apoptosis in AECs in association with pulmonary inflammation. Lung inflammation induced by PCSE was worsened by subsequent exposure to IAV. Mice lacking PAI-1 that were exposed to IAV showed minimal viral burden based on M2 antigen and hemagglutination analyses, whereas transgenic mice that overexpress PAI-1 without PCSE showed increased M2 antigen and inflammation after IAV infection. These observations indicate that increased PAI-1 expression promotes AEC apoptosis and exacerbates lung inflammation induced by IAV following PCSE.  相似文献   

2.
Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1) or avian H9N2 (H9N2/G1) virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed mice, which might partially be attributed to the immunosuppressive effect of nicotine.  相似文献   

3.
Thirdhand smoke (THS) refers to components of secondhand smoke that stick to indoor surfaces and persist in the environment. Little is known about exposure levels and possible remediation measures to reduce potential exposure in contaminated areas. This study deals with the effect of aging on THS components and evaluates possible exposure levels and remediation measures. We investigated the concentration of nicotine, five nicotine related alkaloids, and three tobacco specific nitrosamines (TSNAs) in smoke exposed fabrics. Two different extraction methods were used. Cotton terry cloth and polyester fleece were exposed to smoke in controlled laboratory conditions and aged before extraction. Liquid chromatography-tandem mass spectrometry was used for chemical analysis. Fabrics aged for 19 months after smoke exposure retained significant amounts of THS chemicals. During aqueous extraction, cotton cloth released about 41 times as much nicotine and about 78 times the amount of tobacco specific nitrosamines (TSNAs) as polyester after one hour of aqueous extraction. Concentrations of nicotine and TSNAs in extracts of terry cloth exposed to smoke were used to estimate infant/toddler oral exposure and adult dermal exposure to THS. Nicotine exposure from THS residue can be 6.8 times higher in toddlers and 24 times higher in adults and TSNA exposure can be 16 times higher in toddlers and 56 times higher in adults than what would be inhaled by a passive smoker. In addition to providing exposure estimates, our data could be useful in developing remediation strategies and in framing public health policies for indoor environments with THS.  相似文献   

4.
Cigarette smoke exposure causes chronic oxidative lung damage. During pregnancy, fetal microchimeric cells traffic to the mother. Their numbers are increased at the site of acute injury. We hypothesized that milder chronic diffuse smoke injury would attract fetal cells to maternal lungs. We used a green-fluorescent-protein (GFP) mouse model to study the effects of cigarette smoke exposure on fetomaternal cell trafficking. Wild-type female mice were exposed to cigarette smoke for about 4 weeks and bred with homozygote GFP males. Cigarette smoke exposure continued until lungs were harvested and analyzed. Exposure to cigarette smoke led to macrophage accumulation in the maternal lung and significantly lower fetal weights. Cigarette smoke exposure influenced fetomaternal cell trafficking. It was associated with retention of GFP-positive fetal cells in the maternal lung and a significant reduction of fetal cells in maternal livers at gestational day 18, when fetomaternal cell trafficking peaks in the mouse model. Cells quickly clear postpartum, leaving only a few, difficult to detect, persisting microchimeric cells behind. In our study, we confirmed the postpartum clearance of cells in the maternal lungs, with no significant difference in both groups. We conclude that in the mouse model, cigarette smoke exposure during pregnancy leads to a retention of fetal microchimeric cells in the maternal lung, the site of injury. Further studies will be needed to elucidate the effect of cigarette smoke exposure on the phenotypic characteristics and function of these fetal microchimeric cells, and confirm its course in cigarette smoke exposure in humans.  相似文献   

5.
BackgroundConflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer.ResultsCOPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects.ConclusionsCigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.  相似文献   

6.

Background

Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD) and lung cancer. Respiratory bacterial infections have been shown to be involved in the development of COPD along with impaired airway innate immunity.

Methodology/Principal Findings

To address the in vivo impact of cigarette smoke (CS) exclusively on host innate defense mechanisms, we took advantage of Caenorhabditis elegans (C. elegans), which has an innate immune system but lacks adaptive immune function. Pseudomonas aeruginosa (PA) clearance from intestines of C. elegans was dampened by CS. Microarray analysis identified 6 candidate genes with a 2-fold or greater reduction after CS exposure, that have a human orthologue, and that may participate in innate immunity. To confirm a role of CS-down-regulated genes in the innate immune response to PA, RNA interference (RNAi) by feeding was carried out in C. elegans to inhibit the gene of interest, followed by PA infection to determine if the gene affected innate immunity. Inhibition of lbp-7, which encodes a lipid binding protein, resulted in increased levels of intestinal PA. Primary human bronchial epithelial cells were shown to express mRNA of human Fatty Acid Binding Protein 5 (FABP-5), the human orthologue of lpb-7. Interestingly, FABP-5 mRNA levels from human smokers with COPD were significantly lower (p = 0.036) than those from smokers without COPD. Furthermore, FABP-5 mRNA levels were up-regulated (7-fold) after bacterial (i.e., Mycoplasma pneumoniae) infection in primary human bronchial epithelial cell culture (air-liquid interface culture).

Conclusions

Our results suggest that the C. elegans model offers a novel in vivo approach to specifically study innate immune deficiencies resulting from exposure to cigarette smoke, and that results from the nematode may provide insight into human airway epithelial cell biology and cigarette smoke exposure.  相似文献   

7.
Club (Clara) Cell Secretory Protein (CCSP, or CC16) is produced mainly by non-ciliated airway epithelial cells including bronchiolar club cells and the change of its expression has been shown to associate with the progress and severity of Chronic Obstructive Pulmonary Disease (COPD). In an animal model, the lack of CC16 renders the animal susceptible to the tumorigenic effect of a major CS carcinogen. A recent population-based Tucson Epidemiological Study of Airway Obstructive Diseases (TESAOD) has indicated that the low serum CC16 concentration is closely linked with the smoke-related mortality, particularly that driven by the lung cancer. However, the study of CC16 expression in well-defined smoke exposure models has been lacking, and there is no experimental support for the potential causal link between CC16 and CS-induced pathophysiological changes in the lung. In the present study, we have found that airway CC16 expression was significantly repressed in COPD patients, in monkey CS exposure model, and in CS-induced mouse model of COPD. Additionally, the lack of CC16 exacerbated airway inflammation and alveolar loss in the mouse model. Therefore, CC16 may play an important protective role in CS-related diseases.  相似文献   

8.
Obesity and cigarette smoking independently constitute major preventable causes of morbidity and mortality and obesity is known to worsen lung inflammation in asthma. Paradoxically, higher body mass index (BMI) is associated with reduced mortality in smoking induced COPD whereas low BMI increases mortality risk. To date, no study has investigated the effect of a dietary-induced obesity and cigarette smoke exposure on the lung inflammation and loss of skeletal muscle mass in mice. Male BALB/c mice were exposed to 4 cigarettes/day, 6 days/week for 7 weeks, or sham handled. Mice consumed either standard laboratory chow (3.5 kcal/g, 12% fat) or a high fat diet (HFD, 4.3 kcal/g, 32% fat). Mice exposed to cigarette smoke for 7 weeks had significantly more inflammatory cells in the BALF (P<0.05) and the mRNA expression of pro-inflammatory cytokines and chemokines was significantly increased (P<0.05); HFD had no effect on these parameters. Sham- and smoke-exposed mice consuming the HFD were significantly heavier than chow fed animals (12 and 13%, respectively; P<0.05). Conversely, chow and HFD fed mice exposed to cigarette smoke weighed 16 and 15% less, respectively, compared to sham animals (P<0.05). The skeletal muscles (soleus, tibialis anterior and gastrocnemius) of cigarette smoke-exposed mice weighed significantly less than sham-exposed mice (P<0.05) and the HFD had no protective effect. For the first time we report that cigarette smoke exposure significantly decreased insulin-like growth factor-1 (IGF-1) mRNA expression in the gastrocnemius and tibialis anterior and IGF-1 protein in the gastrocnemius (P<0.05). We have also shown that cigarette smoke exposure reduced circulating IGF-1 levels. IL-6 mRNA expression was significantly elevated in all three skeletal muscles of chow fed smoke-exposed mice (P<0.05). In conclusion, these findings suggest that a down-regulation in local IGF-1 may be responsible for the loss of skeletal muscle mass following cigarette smoke exposure in mice.  相似文献   

9.

Background

Skeletal muscle dysfunction is common in chronic obstructive pulmonary disease (COPD), a disease mainly caused by chronic cigarette use. An important proportion of patients with COPD have decreased muscle mass, suggesting that chronic cigarette smoke exposure may interfere with skeletal muscle cellular equilibrium. Therefore, the main objective of this study was to investigate the kinetic of the effects that cigarette smoke exposure has on skeletal muscle cell signaling involved in protein homeostasis and to assess the reversibility of these effects.

Methods

A mouse model of cigarette smoke exposure was used to assess skeletal muscle changes. BALB/c mice were exposed to cigarette smoke or room air for 8 weeks, 24 weeks or 24 weeks followed by 60 days of cessation. The gastrocnemius and soleus muscles were collected and the activation state of key mediators involved in protein synthesis and degradation was assessed.

Results

Gastrocnemius and soleus were smaller in mice exposed to cigarette smoke for 8 and 24 weeks compared to room air exposed animals. Pro-degradation proteins were induced at the mRNA level after 8 and 24 weeks. Twenty-four weeks of cigarette smoke exposure induced pro-degradation proteins and reduced Akt phosphorylation and glycogen synthase kinase-3β quantity. A 60-day smoking cessation period reversed the cell signaling alterations induced by cigarette smoke exposure.

Conclusions

Repeated cigarette smoke exposure induces reversible muscle signaling alterations that are dependent on the duration of the cigarette smoke exposure. These results highlights a beneficial aspect associated with smoking cessation.  相似文献   

10.
Background: Human population, in spite of the medical and scientific achievements, still fall as a prey to the evils of habitual smoking and alcohol, thus necessitating safer counteracting measures. Objective: To evaluate the effect of cotreatment of curcumin (Curcuma longa) in rats subjected to acute exposure to cigarette smoke (CS) and ethanol (EtOH). Methodology: Of the four groups of experimental rats, a set of rats was subjected to whole body exposure to cigarette smoke along with ethanol administration serving as a model of CS+EtOH injury. Curcumin treatment was given to two sets of rats: (i) one set receiving simultaneous CS+EtOH and (ii) one set of normal rats without any administration. The other group of rats served as control. Blood, liver and lung of rats were selected for assessment of CS+EtOH injury as well as curcumin treatment. Result: Altered lipid, lipoprotein profile and bile acid excretion were observed in CS+EtOH rats along with premalignant pathological state in tissues. In treated rats, the levels were maintained at near-normal levels along with near-normal histology. Conclusion: This biochemical picture on cotreatment with curcumin suggests that curcumin could counteract the injurious effects of combined CS and EtOH and thus might help to reduce the risk of hyperlipidemic disorders which develop due to smoking and drinking.  相似文献   

11.
Both cigar and cigarette tobacco produce an increase in the number of goblet cells in the rat trachea and intrapulmonary airways over a six-week period. The increase in goblet cells is similar for the two types of tobacco; in both it is proportional to increase in dose and greatest in the proximal intrapulmonary airways.  相似文献   

12.
Cigarette smoke exposure is linked to the development of a variety of chronic lung and systemic diseases in susceptible individuals. Metabolomics approaches may aid in defining disease phenotypes, may help predict responses to treatment, and could identify biomarkers of risk for developing disease. Using a mouse model of chronic cigarette smoke exposure sufficient to cause mild emphysema, we investigated whether cigarette smoke induces distinct metabolic profiles and determined their persistence following smoking cessation. Metabolites were extracted from plasma and fractionated based on chemical class using liquid-liquid and solid-phase extraction prior to performing liquid chromatography mass spectrometry-based metabolomics. Metabolites were evaluated for statistically significant differences among group means (p-value≤0.05) and fold change ≥1.5). Cigarette smoke exposure was associated with significant differences in amino acid, purine, lipid, fatty acid, and steroid metabolite levels compared to air exposed animals. Whereas 60% of the metabolite changes were reversible, 40% of metabolites remained persistently altered even following 2 months of smoking cessation, including nicotine metabolites. Validation of metabolite species and translation of these findings to human plasma metabolite signatures induced by cigarette smoking may lead to the discovery of biomarkers or pathogenic pathways of smoking-induced disease.  相似文献   

13.
14.
It has been postulated that prenatal cigarette smoke exposure (CSE) increases the risk for sudden infant death syndrome. The victims of infant death syndrome suffer from respiratory abnormalities, such as central apnea, diminished chemoreflex and alteration in respiratory pattern during sleep. However, no experimental evidence on CSE model exists to confirm whether prenatal CSE gives rise to reduction of neonatal central chemoreception in in vitro preparations in absence of peripheral sensory feedback. The aim of the present study was to test the hypothesis that maternal CSE during pregnancy depresses central chemoreception of the neonatal rats. The pregnant rats were divided into two groups, control (n = 8) and CSE (n = 8). Experiments were performed on neonatal (0–3days) rat pups. Fictive respiratory activity was monitored by recording the rhythmic discharge from the hypoglossal rootlets of the medullary slices obtained from the neonatal rats. The burst frequency (BF) and integrated amplitude (IA) of the discharge were analyzed. Their responses to acidified artificial cerebrospinal fluid (aCSF) were tested to indicate the change of the central chemosensitivity. Under condition of perfusing with standard aCSF (pH 7.4), no significant difference was detected between the two groups in either BF or IA (P>0.05). Under condition of perfusing with acidified aCSF (pH 7.0), BF was increased and IA was decreased in both groups (P<0.01). However, their change rates in the CSE group were obviously smaller than that in the control group, 66.98 ± 10.11% vs. 143.75 ± 15.41% for BF and −22.38 ± 2.51% vs. −44.90 ± 3.92% for IA (P<0.01). In conclusion, these observations, in a prenatal CSE model, provide important evidence that maternal smoking during pregnancy exerts adverse effects on central chemoreception of neonates.  相似文献   

15.
Inflammation-mediated abnormalities in the renin-angiotensin system (RAS) and expression of matrix metalloproteinases (MMPs) are implicated in the pathogenesis of lung injury. Angiotensin converting enzyme II (ACE2), an angiotensin converting enzyme (ACE) homologue that displays antagonist effects on ACE/angiotensin II (Ang II) axis, could also play a protective role against lung diseases. However, the relationship between ACE2 and MMPs activation in lung injury is still largely unclear. The purpose of this study is to investigate whether MMPs activity could be affected by ACE2 and which ACE2 derived signaling pathways could be also involved via using a mouse model with lung injury induced by cigarette smoke (CS) exposure for 1 to 3 weeks. Wild-type (WT; C57BL/6) and ACE2 KO mice (ACE2-/-) were utilized to study CS-induced lung injury. Increases in the resting respiratory rate (RRR), pulmonary immunokines, leukocyte infiltration and bronchial hyperplasia were observed in the CS-exposed mice. Compared to WT mice, more serious physiopathological changes were found in ACE2-/- mice in the first week of CS exposure. CS exposure increased pulmonary ACE and ACE2 activities in WT mice, and significantly increased ACE in ACE2-/- mice. Furthermore, the activity of pulmonary MMPs was decreased in CS-exposed WT mice, whereas this activity was increased in ACE2-/- mice. CS exposure increased the pulmonary p-p38, p-JNK and p-ERK1/2 level in all mice. In ACE2-/- mice, a significant increase p-STAT3 signaling was detected; however, no effect was observed on the p-STAT3 level in WT mice. Our results support the hypothesis that ACE2 deficiency influences MMPs activation and STAT3 phosphorylation signaling to promote more pulmonary inflammation in the development of lung injury.  相似文献   

16.
We sought to develop a rat model of cigarette smoke exposure (CSE) that created cotinine serum levels comparable to those of smokers and induced conditioned place preference (CPP) suggestive of cigarette smoke abuse liability. Rats were exposed to sidestream cigarette smoke delivered semicontinuously for 2 periods of 20 (group S20), 40 (group S40), or 60 (group S60) min daily for 12 wk. Serum cotinine concentration in blood samples was determined at 1 and 20 h after CSE. A biased (black versus white chamber) CPP paradigm was used. In the high CSE group (group S60), serum cotinine at 1 h (250 to 300 ng/mL) was comparable to average cotinine levels reported for addicted smokers (around 300 ng/mL). Cotinine levels at 20 h after CSE were higher than the smoker–nonsmoker cut-off value (greater than 14 ng/mL) in all smoking groups, with the S60 group having the highest levels. All rats preferred the black chamber to the white chamber during the preexposure CPP test. The time spent in the white chamber was increased compared with 0-wk values in group S40 at 8 wk, group S60 at 4 and 8 wk, and the control group at 4 and 8 wk but not at 12 wk; however, the shift in CPP was significantly higher at 8 wk in group S60 compared with other groups. In conclusion, interrupted 2-h daily CSE for 8 wk induced serum cotinine levels in rats comparable to those of smokers and induced CPP suggestive of cigarette smoke abuse liability.Abbreviations: CPP, conditioned place preference; CSE, cigarette smoke exposureThe devastating consequences of smoking on health have been studied extensively in numerous clinical and animal studies over time. This chronic habit leads to dependence on tobacco smoke, with nicotine, a main active ingredient of tobacco products, being recognized as the basic addictive substance.32The known health benefits of smoking cessation motivate smokers to quit tobacco use. However, unaided efforts usually are unsuccessful, resulting in smoking relapse. The fight against nicotine addiction may be undermined by potential weight gain after smoking cessation, potentially discouraging those attempting to quit smoking and contributing to relapse. During the past few years, research has been focused on 2 main areas of interest toward this direction: understanding the underlying biologic mechanisms related to nicotine addiction to effectively design therapeutic strategies to support those who wish to quit smoking and investigating the hormonal and molecular mechanisms responsible for weight gain after smoking cessation.So far, animal models used to study the consequences of smoking cessation involved the administration of nicotine as a sole agent until addiction was achieved.23 However, nicotine-administration models do not completely represent the toxic and addictive effects of cigarette smoke, given that smoke contains more than 4000 chemicals whose actions or coactions have not been thoroughly evaluated yet.1 Cigarette smoke exposure (CSE) animal models have been used in studies investigating the metabolic changes conferred by smoking10-12 but not in those after its cessation. In toxicity studies, animals are exposed to tobacco smoke for various periods, which depend on the side effect under investigation.18,25,27 Smoke exposure timetables usually do not involve weekends for practical reasons, and addiction of animals to tobacco smoke is not assessed in current models.In our opinion, an ideal animal model of cigarette smoke abuse liability suitable for the study of smoking cessation resembles the clinical situation in terms of chronic daily inhalation of cigarette smoke sufficient to attain blood nicotine levels comparable to those of smokers and in cessation of the CSE period after achieving tobacco smoke abuse liability. In the present project, we sought to establish such a model in rats by defining the daily timetable of CSE to induce serum levels of cotinine, nicotine''s major proximate metabolite, comparable to those of smokers and by determining the minimum total CSE period required to induce abuse liability to cigarette smoke. We assessed the CSE period by using a biased conditioned place preference (CPP) paradigm.8  相似文献   

17.
Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death due to a bacterial pathogen. Emerging epidemiologic evidence suggests that the leading risk factor associated with TB mortality is cigarette smoke exposure. Despite this, it remains poorly understood what is the effect of cigarette smoke exposure on anti-TB immunity and whether its potential detrimental effect can be reversed by cigarette smoking cessation. In our current study, we have investigated the impact of both continuous and discontinuous cigarette smoke exposure on the development of anti-mycobacterial type 1 immunity in murine models. We find that while continuous cigarette smoke exposure severely impairs type 1 immunity in the lung, a short-term smoking cessation allows rapid restoration of anti-mycobacterial immunity. The ability of continuous cigarette smoke exposure to dampen type 1 protective immunity is attributed locally to its affects on innate immune cells in the lung. Continuous cigarette smoke exposure locally, by not systemically, impairs APC accumulation and their production of TNF, IL-12, and RANTES, blunts the recruitment of CD4+IFN-γ+ T cells to the lung, and weakens the formation of granuloma. On the other hand, smoking cessation was found to help restore type 1 immunity by rapidly improving the functionality of lung APCs, enhancing the recruitment of CD4+IFN-γ+ T cells to the lung, and promoting the formation of granuloma. Our study for the first time demonstrates that continuous, but not discontinuous, cigarette smoke exposure severely impedes the lung expression of anti-TB Th1 immunity via inhibiting innate immune activation and lung T cell recruitment. Our findings thus suggest cigarette smoking cessation to be beneficial to the control of pulmonary TB.  相似文献   

18.
Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM) proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca2+ ([Ca2+]i) responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca2+ regulatory proteins leading to increased store operated Ca2+ entry (SOCE) and cell proliferation. Using isolated human ASM (hASM) cells, incubated in the presence and absence cigarette smoke extract (CSE) we determined ([Ca2+]i) responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS) and cytokine generation. CSE enhanced [Ca2+]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca2+ regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.  相似文献   

19.
目的研究烟草烟雾暴露对支气管哮喘(简称哮喘)大鼠气道chemokine receptor 6(CCR6)表达的影响,探讨吸烟加重哮喘气道炎症的免疫学机制。方法雄性Wistar大鼠40只,随机分为对照组、烟雾暴露组、哮喘组和哮喘+烟雾暴露组,每组10只。建立哮喘大鼠模型和哮喘大鼠烟草烟雾暴露模型,采集大鼠支气管肺泡灌洗液(BALF)行白细胞计数及分类,采用逆转录-聚合酶链式反应(RT-PCR)方法及免疫组织化学法检测各组大鼠气道CCR6 mRNA及蛋白的表达。结果①哮喘组(69.0±3.5;4.1±1.0;8.9±2.0)、哮喘+烟雾暴露组(86.7±5.2;2.2±1.0;19.0±2.8)BALF中白细胞总数、嗜酸粒细胞、中性粒细胞均高于对照组(10.1±3.8;1.3±0.7;2.2±1.1)、烟雾暴露组(47.7±6.8;0.5±0.3;2.7±1.4)(P均〈0.05);哮喘+烟雾暴露组BALF中白细胞总数和中性粒细胞高于哮喘组,嗜酸粒细胞低于哮喘组(P均〈0.05)。②哮喘组(8.15±0.88;0.452±0.013)、哮喘+烟雾暴露组(15.16±0.87;0.531±0.024)CCR6 mRNA及其蛋白表达水平均明显高于对照组(1.01±0.52;0.299±0.027)、烟雾暴露组(5.55±0.54;0.442±0.018)(均P〈0.01);哮喘+烟雾暴露组明显高于哮喘组(均P〈0.01)。结论烟草烟雾暴露可通过促使气道CCR6 mRNA及其蛋白高表达,加重哮喘大鼠气道慢性炎症。  相似文献   

20.
目的探讨香烟烟雾暴露对支气管哮喘大鼠肺组织水通道蛋白5(Aquaporin 5,AQP5)和黏蛋白5AC(MUC5AC)表达的影响。方法将30只雄性SD大鼠随机分为3组(n=10),对照组雾化生理盐水,哮喘组采用卵清白蛋白(OVA)致敏并吸入激发制备哮喘模型,哮喘+烟雾暴露组于每日雾化激发OVA前给予香烟烟雾吸入。收集支气管肺泡灌洗液(BALF)进行白细胞计数及分类,测定肺组织病理变化及湿干重比值。实时定量PCR(Realtime PCR)测定AQP5和MUC5AC mRNA的表达,免疫组化法测定AQP5蛋白分布情况,免疫印迹法(Western blot)测定AQP5蛋白的表达,酶联免疫吸附试验(ELISA)测定BALF中MUC5AC的含量。结果①与对照组相比,哮喘组大鼠BALF中白细胞、淋巴细胞、嗜酸粒细胞、中性粒细胞数量明显增加;与哮喘组相比,暴露组大鼠BALF中白细胞、中性粒细胞数量明显增加,差异均有统计学意义(P<0.05)。②与对照组相比,哮喘组和暴露组大鼠肺组织中AQP5表达明显减少,而MUC5AC蛋白含量明显增加;与哮喘组相比,暴露组大鼠肺组织中AQP5明显减少,而MUC5AC蛋白含量明显增加,差异均有统计学意义(P<0.05)。③肺组织中AQP5表达与肺组织BALF中MUC5AC蛋白含量呈负相关(r=-0.852和-0.895,P<0.05)。结论香烟烟雾暴露可导致哮喘大鼠肺组织AQP5表达减少而MUC5AC含量增加,进一步加重哮喘气道炎症和黏液高分泌反应,这可能为哮喘吸烟患者的早期防治提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号