首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous report (Yu and Yang,Biochem. Biophys. Res. Commun. 207, 140–147 (1995)], phosphorylase b kinase from rabbit skeletal muscle was found to be phosphorylated and activated by a cyclic nucleotide- and Ca2+-independent protein kinase previously identified as an autophosphorylation-dependent multifunctional protein kinase (autokinase) from brain and liver (Yanget al, J. Biol. Chem. 262, 7034–7040, 9421–9427 (1987)]. In this report, the effect of Mg2+ ion concentration on the auto-kinase-catalyzed activation of phosphorylase b kinase is investigated. The levels of phosphorylation and activation of phosphorylase b kinase catalyzed by auto-kinase are found to be dependent on the concentration of Mg2+ ion used. Phosphorylation of phosphorylase b kinase at high Mg2+ ion (>9 mM) is 2–3 times higher than that observed at low Mg2+ ion (1 mM) and this results in a further 2- to 3-fold activation of the enzyme activity at high Mg2+ ion. Analysis of the phosphorylation stoichiometry ofα andβ subunits of phosphorylase b kinase at different Mg2+ ion concentrations further reveals that the phosphorylation level of theβ subunit remains almost unchanged, whereas the phosphorylation level of theα subunit increases dramatically and correlates with the increased enzyme activity. In similarity with theβ subunit, phosphorylations of myelin basic protein and histone 2A by auto-kinase are also unaffected by Mg2+ ion. Taken together, the results provide initial evidence that Mg2+ ion may specifically render thea subunit a better substrate for auto-kinase to cause further phosphorylation/activation of phosphorylase b kinase, representing a new mode of control mechanism for the regulation of auto-kinase involved in the phosphorylation and concurrent activation of phosphorylase b kinase.  相似文献   

2.
The interaction of rabbit muscle phosphorylase kinase (EC 2.7.1.38) with human erythrocyte membranes was investigated. It was found that at pH 7.0 the kinase binds to the inner face of the erythrocyte membrane (inside-out vesicles) and that this binding is Ca2+- and Mg2+-dependent. The sharpest increase in the binding reaction occurs at concentrations between 70 and 550 nM free Ca2+. Erythrocyte ghost or right-side out erythrocyte vesicles showed a significantly lower capacity to interact with phosphorylase kinase. Autophosphorylated phosphorylase kinase shows a similar Ca2+-dependent binding profile, while trypsin activation of the kinase and calmodulin decrease the original binding capacity by about 50%. Heparin (200 micrograms/ml) and high ionic strength (50 mM NaCl) almost completely blocks enzyme-membrane interaction; glycogen does not affect the interaction.  相似文献   

3.
The isolated glycogen particle provides a means to examine the regulation of glycogen metabolism with the components organized in a functional cellular complex. With this system, we have studied the control of phosphorylase kinase activation by Ca2+ and cAMP. Contrary to a previous report (Heilmeyer, L. M. G., Jr., Meyer, F., Haschke, R. H., and Fisher, E. H. (1980) J. Biol. Chem. 245, 6649-6656), phosphorylase kinase became activated during incubation of the glycogen particle with MgATP2- and Ca2+. Part of this activation could be attributed to the action of the cAMP-dependent protein kinase; however, it was not possible to quantitatively correlate activation with phosphorylation in the presence of Ca2+ and Mg2+ due to a large, but uncertain, contribution of synergistic activation caused by these ions. This latter activation had properties similar to those described by King and Carlson (King, M. M., and Carlson, G. M. (1980) Arch. Biochem. Biophys. 209, 517-523) with the purified enzyme, and its occurrence also explains why phosphorylase kinase activation in the glycogen particle was not observed previously. The cAMP-dependent activation of phosphorylase kinase in the glycogen particle has been characterized. It occurred in a similar manner when either the cAMP-dependent protein kinase or cAMP was added, thus indicating that the phosphorylation sites of phosphorylase kinase complexed in the glycogen particle were accessible to endogenous or exogenous enzyme. In the glycogen particle, both the alpha and beta subunits were phosphorylated by the cAMP-dependent protein kinase, but the alpha subunit dephosphorylation appeared to be preferentially regulated by Ca2+. The activity of phosphorylase kinase in the glycogen particle is regulated by the phosphorylation of both the alpha and beta subunits.  相似文献   

4.
5.
6.
Plant respiratory burst oxidase homolog (rboh) proteins, which are homologous to the mammalian 91-kDa glycoprotein subunit of the phagocyte oxidase (gp91(phox)) or NADPH oxidase 2 (NOX2), have been implicated in the production of reactive oxygen species (ROS) both in stress responses and during development. Unlike mammalian gp91(phox)/NOX2 protein, plant rboh proteins have hydrophilic N-terminal regions containing two EF-hand motifs, suggesting that their activation is dependent on Ca(2+). However, the significance of Ca(2+) binding to the EF-hand motifs on ROS production has been unclear. By employing a heterologous expression system, we showed that ROS production by Arabidopsis thaliana rbohD (AtrbohD) was induced by ionomycin, which is a Ca(2+) ionophore that induces Ca(2+) influx into the cell. This activation required a conformational change in the EF-hand region, as a result of Ca(2+) binding to the EF-hand motifs. We also showed that AtrbohD was directly phosphorylated in vivo, and that this was enhanced by the protein phosphatase inhibitor calyculin A (CA). Moreover, CA itself induced ROS production and dramatically enhanced the ionomycin-induced ROS production of AtrbohD. Our results suggest that Ca(2+) binding and phosphorylation synergistically activate the ROS-producing enzyme activity of AtrbohD.  相似文献   

7.
Trivalent lanthanide ions and Cd2+ were found to mimic effectively the stimulatory action of Ca2+ on rabbit muscle phosphorylase kinase. In the range of concentrations tested, Cd2+ and lanthanides (Tb3+, Gd3+, Pr3+, Ce3+) could substitute for Ca2+ in activating the enzyme to about 60% and 70% respectively of the maximal level seen with Ca2+, at pH 8.2. The effect induced by Cd2+ was biphasic (stimulation followed by inhibition with increasing metal cation concentration). Similar results were obtained at pH 6.8. Cd2+ and Tb3+ were also able to replace Ca2+ required for the stimulation of phosphorylase kinase activity at pH 8.2 by exogenous calmodulin. Maximal stimulation induced by calmodulin in presence of Cd2+ was significantly higher than that in presence of Ca2+ or Tb3+.  相似文献   

8.
Sarcolemma (SL) vesicles, isolated from pig heart, contain both a Ca2+-calmodulin-dependent protein kinase (CaM-PK) and a Ca2+-dependent Mg2+-ATPase (Ca2+/Mg2+)-ATPase). Some of their properties have been compared: their affinity for Ca2+ ions, dependence on exogenous calmodulin (CaM) and sensitivity to the anti-CaM drug calmidazolium (R24571). The properties of Ca2+-CaM-dependent brain phosphodiesterase (PDE) have also been examined. R24571 appeared to be the most potent inhibitor from brain PDE. For the three enzymes studied, exogenously added CaM was able to antagonize the R24571 inhibition, although the efficiency to counteract was rather low in the case of the SL Ca2+/Mg2+-ATPase. R24571 decreased the affinity of the Ca2+/Mg2+-ATPase for Ca2+ ions (KCa 0.35 versus 0.75 microM) and exerted an inhibition non-competitive with Ca2+ ions on the other CaM-dependent enzymes. Membrane-bound CaM, which is involved in controlling the Ca2+/Mg2+-ATPase, appeared to be present in a stoichiometry varying from 1:1 to 1:4 compared to the 32P-intermediate of the ATPase. R24571 treatment of SL vesicles selectively solubilized a number of proteins in the molecular range of 13-20 kD, which may include CaM. The results suggest that different mechanisms are involved in the CaM control of the two SL enzymes studied.  相似文献   

9.
Phosphorylase kinase was found to be activated and phosphorylated at 10mM Mg2+ by the cAMP-dependent protein kinase-catalyzed reaction ot much higher levels than observed previously when reactions were carried out in 1 to 2 mM Mg2+ (Cohen, P. (1973) Eur. J. Biochem. 34, 1; Hayakawa, T., Perkin, J.P., and Krebs, E.G. (1973) Biochemistry 12, 574). That the reaction at 10 mM Mg2+ is protein kinase-catalyzed is supported by several observations: (a) the reaction is facilitated by the addition of protein kinase; (b) the reaction depends on cAMP when protein kinase holoenzyme is uded; (c) the reaction is not inhibited by 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetate which is known to inhibit autoactivation and autophosphorylation of phosphorylase kinase; and (d) the protein inhibitor of protein kinase inhibits this reaction. The phosphorylation and activation of phosphorylase kinase seem to occur in two phases. At low Mg2+ only the first phase is manifested and involves the incorporation of 2 mol of phosphate, 1 mol into each of Subunits A and B. At high Mg2+ additional sites are phosphorylated almost exclusively on Subunit A, with phosphate incorporation approaching the final level of 7 to 9 mol. Enzyme activity at high Mg2+ is 2 to 3 times higher than that observed when activation is studied at low Mg2+. The observation that both casein and type II histone are phosphorylated to the same extent at 1 mM and 10 mM Mg2+ suggested that high Mg2+ may be altering the conformation of phosphorylase kinase thus rendering more phosphorylation sites accessible to protein kinase. Since the phosphorylation of phosphorylase kinase by either the protein kinase-catalyzed or autocatalytic reaction can result in the incorporation of 7 to 9 mol of phosphate, the finding that only about seven sites become phosphorylated by both mechanisms acting together suggest that activation by these two mechanisms may involve common phosphorylation sites.  相似文献   

10.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

11.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

12.
Mast cell activation involves cross-linking of IgE receptors followed by phosphorylation of the non-receptor tyrosine kinase Syk. This results in activation of the plasma membrane-bound enzyme phospholipase Cgamma1, which hydrolyzes the minor membrane phospholipid phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol trisphosphate. Inositol trisphosphate raises cytoplasmic Ca2+ concentration by releasing Ca2+ from intracellular stores. This Ca2+ release phase is accompanied by sustained Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels. Here, we find that engagement of IgE receptors activates Syk, and this leads to Ca2+ release from stores followed by Ca2+ influx. The Ca2+ influx phase then sustains Syk activity. The Ca2+ influx pathway activated by these receptors was identified as the CRAC channel, because pharmacological block of the channels with either a low concentration of Gd3+ or exposure to the novel CRAC channel blocker 3-fluoropyridine-4-carboxylic acid (2',5'-dimethoxybiphenyl-4-yl)amide or RNA interference knockdown of Orai1, which encodes the CRAC channel pore, all prevented the increase in Syk activity triggered by Ca2+ entry. CRAC channels and Syk are spatially close together, because increasing cytoplasmic Ca2+ buffering with the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis failed to prevent activation of Syk by Ca2+ entry. Our results reveal a positive feedback step in mast cell activation where receptor-triggered Syk activation and subsequent Ca2+ release opens CRAC channels, and the ensuing local Ca2+ entry then maintains Syk activity. Ca2+ entry through CRAC channels therefore provides a means whereby the Ca2+ and tyrosine kinase signaling pathways can interact with one another.  相似文献   

13.
14.
15.
(1) At ATP concentrations up to 30 micrometer addition of 0.5 mM MgCl2 in the reaction mixture increases both the rate of formation and the steady-state level of the phosphoenzyme of the Ca2+-ATPase from human red cell membranes. Under these conditions Mg2+ has no effect on the rate of dephosphorylation, which remains slow. (2) In the presence of Mg2+ the rate of dephosphorylation is increased 5 to 10 times by high (1 mM) concentrations of ATP. (3) Provided Mg2+ has reacted with the phosphoenzyme, acceleration of dephosphorylation by ATP takes place in the absence of Mg2+. This suggests that the role of Mg2+ on dephosphorylation is to convert the phosphoenzyme into a form that, after combination with ATP, reacts rapidly with water. (4) The results are consistent with the idea that combination of ATP at a non-catalytic site is needed for rapid dephosphorylation of the Ca2+-ATPase.  相似文献   

16.
A strong Ca2+-independent interaction between the isolated, active gamma subunit of phosphorylase kinase and dansyl-calmodulin (dansyl-CaM) was observed by monitoring changes in fluorescence intensity in the absence of calcium ion. The pure, active gamma subunit of phosphorylase kinase was simply prepared by dialyzing the HPLC-purified, inactive gamma subunit against 8 M urea, containing 0.1 mM DTT, 0.1 M Hepes at pH 6.8 or 0.1 M Tris at pH 8.2, followed by dilution of urea with pH 6.8 or 8.2 buffer. The dissociation constants determined by fluorescence spectroscopy for the gamma subunit to dansyl-CaM are 25.7 +/- 0.6 and 104 +/- 12 nM at pH 6.8 in the presence and absence of CaCl2. At pH 8.2, these values are 4.9 +/- 0.3 and 29 +/- 8 nM in the presence and absence of CaCl2. As the free Ca2+ decreases to as low as 10(-9) M, the fluorescence intensity and the fluorescence polarization of the gamma subunit and dansyl-CaM complex do not decrease in parallel, indicating that the complex does not come apart at low Ca2+ concentration. The presence of Mg2+ affects the interaction between dansyl-CaM and the gamma subunit, as indicated by the increase in the polarization of fluorescence of dansyl-CaM. Mn2+ interferes with the interaction of the gamma subunit and dansyl-CaM. Free ATP has little effect.  相似文献   

17.
The (Ca2+ + Mg2+)-ATPase was purified from skeletal muscle sarcoplasmic reticulum and reconstituted into sealed phospholipid vesicles by solution in cholate and deoxycholate followed by detergent removal on a column of Sephadex G-50. The level of Ca2+ accumulated by these vesicles, either in the presence or absence of phosphate within the vesicles, increased with increasing content of phosphatidylethanolamine in the phospholipid mixture used for the reconstitution. The levels of Ca2+ accumulated in the absence of phosphate were very low for vesicles reconstituted with egg yolk phosphatidylcholine alone at pH 7.4, but increased markedly with decreasing pH to 6.0. Uptake was also relatively low for vesicles reconstituted with dimyristoleoyl- or dinervonylphosphatidylcholine, and addition of cholesterol had little effect. The level of Ca2+ accumulated increased with increasing external K+ concentration, and was also increased by the ionophores FCCP and valinomycin. Vesicle sizes changed little with changing phosphatidylethanolamine content, and the sidedness of insertion of the ATPase was close to random at all phosphatidylethanolamine contents. It is suggested that the effect of phosphatidylethanolamine on the level of Ca2+ accumulation follows from an effect on the rate of Ca2+ efflux mediated by the ATPase.  相似文献   

18.
The proenzyme form of protease-activated kinase (PAK) II from reticulocytes has been shown to be activated in vitro by limited proteolysis and characterized using 40 S ribosomal subunits as substrate (T.H. Lubben and J.A. Traugh (1983) J. Biol. Chem. 258, 13992-13997). In these studies, we have shown that PAK II can be activated in a Ca2+-independent manner with phospholipids/diolein using histone 1, eukaryotic initiation factor 2, and 40 S ribosomal subunits as substrates. The addition of Ca2+ results in a diminution of PAK II activity. The Ca2+/phospholipid-dependent protein kinase (protein kinase C) is present in reticulocytes and is separated from PAK II during purification by chromatography on ADP-agarose. PAK II activated by limited proteolysis has the same substrate specificity as PAK II activated by phospholipids/diolein as shown by two-dimensional finger-printing of tryptic phosphopeptides of histone 1 and ribosomal protein S6, indicating proteolysis did not alter the specificity of the enzyme. Lipid vesicles decrease the Km of PAK II for histone 1 by 10-fold, while no effect is observed on the Km or the Vmax of PAK II for ATP. These results are strikingly different from the kinetics reported for protein kinase C, where the activators increase the Vmax for ATP. The two enzymes have similar, if not identical, substrate specificity with histone 1, as determined by phosphopeptide mapping, but at least 8-fold more protein kinase C than PAK II is required to incorporate a comparable amount of phosphate into S6 and it is not possible to incorporate stoichiometric amounts of phosphate into S6 with protein kinase C. The two protein kinases also differentially phosphorylate other substrates. The data support the hypothesis that PAK II and protein kinase C are closely related, but unique enzymes.  相似文献   

19.
Protein kinase C has been shown to be a phospholipid/Ca2+-dependent enzyme activated by diacylglycerol (Nishizuka, Y. (1984) Nature 308, 693-697; Nishizuka, Y. (1984) Science 225, 1365-1370). We have reported that unsaturated fatty acids (oleic acid and arachidonic acid) can activate protein kinase C independently of Ca2+ and phospholipid (Murakami, K., and Routtenberg, A. (1985) FEBS Lett. 192, 189-193). This study shows that other cis-fatty acids such as linoleic acid also fully activate protein kinase C in the same manner. None of the saturated fatty acids (C:4 to C:18) nor the detergents (sodium dodecyl sulfate and Triton X-100) tested here were as effective as oleic acid. Unlike oleic acid, these detergents strongly inhibited protein kinase C activity induced by Ca2+/phosphatidylserine (PS) and diacylglycerol. Lowering the critical micelle concentration of oleic acid by increasing ionic strength also strongly inhibited oleic acid activation of protein kinase C activity. Dioleoylphosphatidylserine activated protein kinase C effectively (Ka = 7.2 microM). On the other hand, dimyristoylphosphatidylserine, which contains saturated fatty acids at both acyl positions, failed to activate protein kinase C even in the presence of Ca2+. These observations suggest that: protein kinase C activation by free fatty acid is specific to the cis-form and is not due to their detergent-like action, cis-fatty acid activation is due to the direct interaction of protein kinase C with the monomeric form of cis-fatty acids and not with the micelles of fatty acids, and cis-fatty acids at acyl positions in PS are also important for Ca2+/PS activation of protein kinase C.  相似文献   

20.
Rabbit muscle troponin C was selectively modified at Cys-98 by 1,3-difluoro-4,6-dinitrobenzene. The second function of the bifunctional reagent was triggered at alkaline pH in the presence and absence of Ca2+. The crosslinked troponin C was hydrolyzed by trypsin and the peptides containing a dinitrobenzene moiety were isolated. When troponin C was crosslinked in the presence of Ca2+, the single dinitrobenzene-containing peptide was Gly-89-Arg-100, in which Cys-98 was crosslinked with Lys-90. When crosslinking was performed in the absence of Ca2+, beside the above peptide two additional peptides containing dinitrobenzene were found. One of these peptides is made up of two fragments, Ser-91-Arg-100 and Asn-105-Arg-120, crosslinked between Cys-98 and Tyr-109. The second peptide, Ala-121-Lys-140, contains modified Lys-136, presumably crosslinked with His-135. The data indicate that the distances between the α-carbon of Cys-98 and those of Lys-90, Tyr-109, Lys-136 and probably the α-carbon distance His-125-Lys-136, do not exceed 14 Å. Comparison with the X-ray structure of troponin C (Herzberg, O, and James, M.N.G. (1985) Nature 313, 653–659) indicates that some of the above distances increase on Ca2+-binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号