首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During porphyrin biosynthesis the oxygen-independent coproporphyrinogen III oxidase (HemN) catalyzes the oxidative decarboxylation of the propionate side chains of rings A and B of coproporphyrinogen III to form protoporphyrinogen IX. The enzyme utilizes a 5'-deoxyadenosyl radical to initiate the decarboxylation reaction, and it has been proposed that this occurs by stereo-specific abstraction of the pro-S-hydrogen atom at the beta-position of the propionate side chains leading to a substrate radical. Here we provide EPR-spectroscopic evidence for intermediacy of the latter radical by observation of an organic radical EPR signal in reduced HemN upon addition of S-adenosyl-L-methionine and the substrate coproporphyrinogen III. This signal (g(av) = 2.0029) shows a complex pattern of well resolved hyperfine splittings from at least five different hydrogen atoms. The radical was characterized using regiospecifically labeled (deuterium or 15N) coproporphyrinogen III molecules. They had been generated from a multienzyme mixture and served as efficient substrates. Reaction of HemN with coproporphyrinogen III, perdeuterated except for the methyl groups, led to the complete loss of resolved proton hyperfine splittings. Substrates in which the hydrogens at both alpha- and beta-positions, or only at the beta-positions of the propionate side chains, or those of the methylene bridges, were deuterated showed that there is coupling with hydrogens at the alpha-, beta-, and methylene bridge positions. Deuterium or 15N labeling of the pyrrole nitrogens without labeling the side chains only led to a slight sharpening of the radical signal. Together, these observations clearly identified the radical signal as substrate-derived and indicated that, upon abstraction of the pro-S-hydrogen atom at the beta-position of the propionate side chain by the 5'-deoxyadenosyl radical, a comparatively stable delocalized substrate radical intermediate is formed in the absence of electron acceptors. The observed hyperfine constants and g values show that this coproporphyrinogenyl radical is allylic and encompasses carbon atoms 3', 3, and 4.  相似文献   

2.
3.
4.
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed.  相似文献   

5.
Using [14C]Coproporphyrinogen obtained from human red blood cells incubated with [4 14C] δ aminolevulinic acid, we measured lymphocytes Coproporphyrinogen III Oxidase activity in 17 subjects with hereditary coproporphyria. The mean activity was about 50 % of that in lymphocytes from normal subjects. This finding suggests that decreased coproporphyrinogen III oxidase activity reflects the primary genetic defect in Hereditary Coproporphyria. The technique described allows easy detection of asymptomatic carriers.  相似文献   

6.
We isolated an Arabidopsis lesion initiation 2 (lin2) mutant, which develops lesion formation on leaves and siliques in a developmentally regulated and light-dependent manner. The phenotype of the lin2 plants resulted from a single nuclear recessive mutation, and LIN2 was isolated by a T-DNA tagging approach. LIN2 encodes coproporphyrinogen III oxidase, a key enzyme in the biosynthetic pathway of chlorophyll and heme, a tetrapyrrole pathway, in Arabidopsis. The lin2 plants express cytological and molecular markers associated with the defense responses, usually activated by pathogen infection. These results demonstrate that a porphyrin pathway impairment is responsible for the lesion initiation phenotype, which leads to the activation of defense responses, in Arabidopsis. Lesion formation was not suppressed, and was even enhanced when accumulation of salicylic acid (SA) was prevented in lin2 plants by the expression of an SA-degrading salicylate hydroxylase (nahG) gene. This suggests that the lesion formation triggered in lin2 plants is determined prior to or independently of the accumulation of SA but that the accumulation is required to limit the spread of lesions in lin2 plants.  相似文献   

7.
8.
9.
10.
The toxicity of the metalloids arsenic and antimony is related to uptake, whereas detoxification requires efflux. In this report we show that uptake of the trivalent inorganic forms of arsenic and antimony into cells of Escherichia coli is facilitated by the aquaglyceroporin channel GlpF and that transport of Sb(III) is catalyzed by the ArsB carrier protein; everted membrane vesicles accumulated Sb(III) with energy supplied by NADH oxidation, reflecting efflux from intact cells. Dissipation of either the membrane potential or the pH gradient did not prevent Sb(III) uptake, whereas dissipation of both completely uncoupled the carrier protein, suggesting that transport is coupled to either the electrical or the chemical component of the electrochemical proton gradient. Reciprocally, Sb(III) transport via ArsB dissipated both the pH gradient and the membrane potential. These results strongly indicate that ArsB is an antiporter that catalyzes metalloid-proton exchange. Unexpectedly, As(III) inhibited ArsB-mediated Sb(III) uptake, whereas Sb(III) stimulated ArsB-mediated As(III) transport. We propose that the actual substrate of ArsB is a polymer of (AsO)(n), (SbO)(n), or a co-polymer of the two metalloids.  相似文献   

11.
Native and trypsin-modified methionyl-tRNA synthetases from Escherichia coli were found to be inactivated by incubation in the presence of Co(III) complexes of ATP, stabilized either by imidazole or phenanthroline, or by oxidation in situ to Co(III) of the substrate ATP-Co(II). It has been shown that the inactivation proceeds by specific labeling of the catalytic ATP-Mg(II) site of the synthetases. The enzymes are completely inactivated by the incorporation of one cobalt atom and one ATP molecule per active site. The inactivated enzymes may be stored for a long period without significant reactivation or removal of the cobalt label. In the presence of dithiothreitol or 2-mercaptoethanol, the labeled enzymes recover full activity with concomittant release of the bound label molecules.  相似文献   

12.
[14C2]Coproporphyrin III, 14C-labelled in the carboxyl carbon atoms of the 2- and 4-propionate substituents, was prepared by stepwise modification of the vinyl groups of protoporphyrin IX. The corresponding porphyrinogen was used as substrate in a specific sensitive assay for coproporphyrinogen oxidase (EC 1.3.3.3) in which the rate of production of 14CO2 is measured. With this method, the Km of the enzyme from rat liver for coproporphyrinogen III is 1.2 micron. Coproporphyrin III is a competitive inhibitor of the enzyme (Ki 7.6 micron). Apparent Km values for other substrates were measured by a mixed-substrate method: that for coproporphyrinogen IV is 0.9 micron and that for harderoporphyrinogen 1.6 micron. Rat liver mitochondria convert pentacarboxylate porphyrinogen III into dehydroisocoproporphyrinogen at a rate similar to that for the formation of protoporphyrinogen IX from coproporphyrinogen III. Mixed-substrate experiments indicate that this reaction is catalysed by coproporphyrinogen oxidase and that the Km for this substrate is 29 micron. It is suggested that the ratio of the concentration of pentacarboxylate porphyrinogen III to coproporphyrinogen III in the hepatocyte determines the relative rates of formation of dehydroisocoproporphyrinogen and protoporphyrinogen IX.  相似文献   

13.
14.
15.
In bacteria the oxygen-independent coproporphyrinogen-III oxidase catalyzes the oxygen-independent conversion of coproporphyrinogen-III to protoporphyrinogen-IX. The Escherichia coli hemN gene encoding a putative part of this enzyme was overexpressed in E. coli. Anaerobically purified HemN is a monomeric protein with a native M(r) = 52,000 +/- 5,000. A newly established anaerobic enzyme assay was used to demonstrate for the first time in vitro coproporphyrinogen-III oxidase activity for recombinant purified HemN. The enzyme requires S-adenosyl-l-methionine (SAM), NAD(P)H, and additional cytoplasmatic components for catalysis. An oxygen-sensitive iron-sulfur cluster was identified by absorption spectroscopy and iron analysis. Cysteine residues Cys(62), Cys(66), and Cys(69), which are part of the conserved CXXXCXXC motif found in all HemN proteins, are essential for iron-sulfur cluster formation and enzyme function. Completely conserved residues Tyr(56) and His(58), localized closely to the cysteine-rich motif, were found to be important for iron-sulfur cluster integrity. Mutation of Gly(111) and Gly(113), which are part of the potential GGGTP S-adenosyl-l-methionine binding motif, completely abolished enzymatic function. Observed functional properties in combination with a recently published computer-based enzyme classification (Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., and Miller, N. E. (2001) Nucleic Acids Res. 29, 1097-1106) identifies HemN as "Radical SAM enzyme." An appropriate enzymatic mechanism is suggested.  相似文献   

16.
We found that the structural gene for monoamine oxidase was located at 30.9 min on the Escherichia coli chromosome. Deletion analysis showed that two amine oxidase genes are located in this region. The nucleotide sequence of one of the two genes was determined. The peptide sequence of the first 40 amino acids from the N terminus of monoamine oxidase purified from E. coli agrees with that deduced from the nucleotide sequence of the gene. The leader peptide extends over 30 amino acids. The nucleotide sequence of the gene and amino acid sequence of the predicted mature enzyme (M.W. 81,295) were highly homologous to those of the maoAK gene and monoamine oxidase from Klebsiella aerogenes, respectively. From these results and analysis of the enzyme activity, we concluded that the gene encodes for monoamine oxidase (maoAE). The tyrosyl residue, which may be converted to topa quinone in the E. coli enzyme, was located by comparison with amino acid sequences at the cofactor sites in other copper/topa quinone-containing amine oxidases.  相似文献   

17.
Oxygen-dependent radiosensitivity of Escherichia coli W3623 his- was confirmed. Regarding cellular superoxide dismutase (SOD), cells grown oxically gained higher activity than those grown anoxically, however, the reinforced enzyme level could not compensate the oxygen effect, i.e., the enhanced lethal effect of oxic γ-irradiation. Rather, the enhancement of oxygen effect was found in cells grown oxically compared with those anoxically. Oxygen enhanced lethality was mitigated to the extent by the amount of added SOD into the cell suspension to be irradiated. The results supported a proposal that superoxide anion, , is involved in the oxygen effect, with the most likely site of the damage in the outer structure of cell but not in the cell matrix. Reverse oxygen effect could be found with λ phage DNA in transfecting ability. Added SOD protected phage DNA somewhat in oxic irradiation. While considerable protections were found in anoxic one with the added SOD even autoclaved but their function was still unknown.  相似文献   

18.
We have found CueO from Escherichia coli to have a robust cuprous oxidase activity, severalfold higher than any homologue. These data suggest that a functional role for CueO in protecting against copper toxicity in vivo includes the removal of Cu(I).  相似文献   

19.
Escherichia coli strains carrying the protease III structural gene (ptr) on a plasmid secreted the protein into the growth medium. Plasmid-encoded beta-lactamase and chloramphenicol acetyl transferase, which served as periplasmic and cytoplasmic markers during cell fractionation, were not released into the growth medium. There appeared to be some strain dependence on the proficiency of the secretion system. Protease III was not detectably processed upon export through the outer cell membrane.  相似文献   

20.
Al-Sheboul S  Saffarini D 《Anaerobe》2011,17(6):501-505
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号