首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taurine has been shown to prevent cardiomyocyte apoptosis. This study investigated the effects of taurine on NADPH oxidase and calpain activation in mediating apoptosis in cardiomyocytes. Apoptosis was induced by norepinephrine (NE) in cultured adult rat ventricular cardiomyocytes. NE (5 microM) increased NADPH oxidase activation and reactive oxygen species (ROS) production and induced apoptosis. These effects of NE on cardiomyocytes were diminished by taurine (0.5 mg/kg) but not beta-alanine. Inhibition of gp91(phox)-NADPH oxidase or ROS production protected cardiomyocytes from apoptosis. NE also induced calpain-1 activation in cardiomyocytes. This effect of NE on calpain was abrogated by gp91(phox)-NADPH oxidase inhibition or ROS scavengers and was mimicked by H(2)O(2) (25 microM) in cardiomyocytes. Pharmacological inhibitors of calpain or overexpression of calpastatin, a specific calpain inhibitor, blocked calpain activation and prevented cardiomyocyte apoptosis during NE stimulation. Furthermore, taurine treatment inhibited NE- or H(2)O(2)-induced calpain activation in cardiomyocytes. In conclusion, NADPH oxidase induces calpain activation, leading to apoptosis in NE-induced cardiomyocytes. Taurine inhibits NADPH oxidase and calpain activation. Thus, inhibition of NADPH oxidase-mediated calpain activation may be an important mechanism for taurine's antiapoptotic action in cardiomyocytes.  相似文献   

2.
Immune complex-induced inflammation can be mediated by the classical pathway of complement. However, using mice genetically deficient in factor B or C4, we have shown that the collagen Ab-induced model of arthritis requires the alternative pathway of complement and is not dependent on the classical pathway. We now demonstrate that collagen Ab-induced arthritis is not altered in mice genetically deficient in either C1q or mannose-binding lectins A and C, or in both C1q and mannose-binding lectins. These in vivo results prove the ability of the alternative pathway to carry out pathologic complement activation in the combined absence of intact classical and lectin pathways. C3 activation was also examined in vitro by adherent collagen-anti-collagen immune complexes using sera from normal or complement-deficient mice. These results confirm the ability of the alternative pathway to mediate immune complex-induced C3 activation when C4 or C1q, or both C1q and mannose-binding lectins, are absent. However, when all three activation pathways of complement are intact, initiation by immune complexes occurs primarily by the classical pathway. These results indicate that the alternative pathway amplification loop, with its ability to greatly enhance C3 activation, is necessary to mediate inflammatory arthritis induced by adherent immune complexes.  相似文献   

3.
The antiphospholipid syndrome (APS) is characterized by recurrent fetal loss, intrauterine growth restriction, and vascular thrombosis in the presence of antiphospholipid (aPL) Abs. Our studies in a murine model of APS induced by passive transfer of human aPL Abs have shown that activation of complement and recruitment of neutrophils into decidua are required for fetal loss, and emphasize the importance of inflammation in aPL Ab-induced pregnancy loss. In this study, we examine the role of TNF-alpha in pregnancy complications associated with aPL Abs in a murine model of APS. We show that aPL Abs are specifically targeted to decidual tissue and cause a rapid increase in decidual and systemic TNF-alpha levels. We identify the release of TNF-alpha as a critical intermediate that acts downstream of C5 activation, based on the fetal protective effects of TNF-alpha deficiency and TNF blockade and on the absence of increased TNF-alpha levels in C5-deficient mice treated with aPL Abs. Our results suggest that TNF-alpha links pathogenic aPL Abs to fetal damage and identify TNF blockade as a potential therapy for the pregnancy complications of APS.  相似文献   

4.
Heparin and modified heparin inhibit complement activation in vivo.   总被引:6,自引:0,他引:6  
Heparin regulates C activity in vitro, but has not been examined for this activity in vivo. The present study investigated the ability of commercial heparin and derivatized (N-desulfated, N-acetylated) heparin (Hep-NAc) with greatly diminished anticoagulant activity to inhibit C activation in guinea pigs. Catheters were placed in the right atrium of guinea pigs and kept patent with frequent saline flushes. The next day, heparin, Hep-NAc, or saline was given and 2.5 min later cobra venom factor or saline was given. Blood was drawn at intervals and assayed for total hemolytic C, C3 hemolytic activity, free hemoglobin, and activated partial thromboplastin time. Total hemolytic C and C3 activity decreased less rapidly in heparin- and Hep-NAc-pretreated animals than in non-pretreated animals, indicating that both heparins inhibited C activation. Heparin and Hep-NAc also inhibited cobra venom factor-induced hemolysis. This study demonstrates that commercial heparin and modified heparin inhibit C activation in vivo. This represents an important step in the development of an oligosaccharide drug to regulate C activation.  相似文献   

5.
The effect of lipopolysaccharide on doxorubicin-induced cell death was studied by using mouse RAW 264.7 macrophage cells. Pretreatment with lipopolysaccharide at 10 ng/mL prevented doxorubicin-induced cell death and the inhibition was roughly dependent on the concentration of lipopolysaccharide. Posttreatment with lipopolysaccharide for 1 hour also prevented doxorubicin-induced cell death. Lipopolysaccharide inhibited DNA fragmentation and caspase-3 activation in doxorubicin-treated RAW 264.7 cells, suggesting the prevention of doxorubicin-induced apoptosis. Lipopolysaccharide did not significantly inhibit doxorubicin-induced DNA damage detected by single-cell gel electrophoresis (comet) assay. Lipopolysaccharide definitely inhibited the stabilization and nuclear translocation of p53 in doxorubicin-treated RAW 264.7 cells. Lipopolysaccharide, as well as being an inhibitor of p53, abolished doxorubicin-induced apoptosis. Therefore, p53 was suggested to play a pivotal role in the prevention of doxorubicin-induced apoptosis in RAW 264.7 cells by lipopolysaccharide.  相似文献   

6.
Antiphospholipid (aPL) syndrome (APS) is characterized by thromboembolic events, thrombocytopenia, or recurrent miscarriage associated with aPL Abs with specificity for beta2-glycoprotein-I (beta2GPI). We recently reported that at least 44% of patients with the APS possess circulating type 1 (Th1) CD4+ T cells that proliferate and secrete IFN-gamma when stimulated with beta2GPI in vitro. In this study, we show that stimulation of PBMCs from 20 APS patients with beta2GPI induced substantial monocyte tissue factor (TF) (80 +/- 11 TF stimulation index (TF-SI)), whereas no induction was observed using PBMCs from 13 patients with aPL Abs without APS (6 +/- 1 TF-SI) or 7 normal and 7 autoimmune controls (5 +/- 1 and 3 +/- 1 TF-SI, respectively) (p < 0.0001). TF induction on monocytes by beta2GPI was dose dependent and required CD4+ T lymphocytes and class II MHC molecules. Because monocyte TF induction by beta2GPI was observed in all patients with APS, but not in any patient with aPL Abs without APS, this response is a potentially useful predictor for APS in patients with aPL Abs, as well as providing mechanistic insight into thrombosis and fetal loss in these patients.  相似文献   

7.
Obstetric antiphospholipid syndrome (OAPS) is mediated by antiphospholipid antibodies (aPLs, and anti‐β2 glycoprotein I antibody is the main pathogenic antibody), and recurrent abortion, preeclampsia, foetal growth restriction and other placental diseases are the main clinical characteristics of placental pathological pregnancy. It is a disease that seriously threatens the health of pregnant women. Hydroxychloroquine (HCQ) was originally used as an anti‐malaria drug and has now shown benefit in refractory OAPS where conventional treatment has failed, with the expectation of providing protective clinical benefits for both the mother and foetus. However, its efficacy and mechanism of action are still unclear. After clinical data were collected to determine the therapeutic effect, human trophoblast cells in early pregnancy were prepared and treated with aPL. After the addition of HCQ, the proliferation, invasion, migration and tubule formation of the trophoblast cells were observed so that the therapeutic mechanism of HCQ on trophoblast cells could be determined. By establishing an obstetric APS mouse model similar to the clinical situation, we were able to detect the therapeutic effect of HCQ on pathological pregnancy. The normal function of trophoblast cells is affected by aPL. Antibodies reduce the ability of trophoblast cells to invade and migrate and can impair tubule formation, which are closely related to placental insufficiency. HCQ can partially reverse these side effects. In the OAPS mouse model, we found that HCQ prevented foetal death and reduced the incidence of pathological pregnancy. Therefore, HCQ can improve pregnancy outcomes and reverse the aPL inhibition of trophoblast disease. In OAPS, the use of HCQ needs to be seriously considered.  相似文献   

8.
Our laboratory has shown that short-term treatment in vivo or in vitro with monospecific antibody to individual complement components can have long-term effects on the production of those components. In vitro studies have focused on the fourth component of complement (C4) in a guinea pig model. Uniform splenic fragments have been used to mimic the in vivo microenvironment of the C4-producing macrophages. A 4-day exposure to anti-C4 antibody led to a reduction of secreted C4 for 1 to 2 wk and a reduction of intracellular C4 that persisted even longer. In an attempt to understand how short-term exposure to antibody can specifically and permanently disrupt the C4-producing cell, we have determined whether C4 suppression could be enhanced by components that modulate cellular functions through their role as secondary intracellular messengers. We found that compounds which elevated cellular levels of cAMP by any of three mechanisms all enhanced antibody-induced suppression of C4.  相似文献   

9.
Molecular targeted agents are pharmacologically used to treat liver fibrosis and have gained increased attention. The present study examined the preventive effect of lenvatinib on experimental liver fibrosis and sinusoidal capillarization as well as the in vitro phenotypes of hepatic stellate cells. LX-2, a human stellate cell line, was used for in vitro studies. In vivo liver fibrosis was induced in F344 rats using carbon tetrachloride by intraperitoneal injection for 8 weeks, and oral administration of lenvatinib was started two weeks after initial injection of carbon tetrachloride. Lenvatinib restrained proliferation and promoted apoptosis of LX-2 with suppressed phosphorylation of extracellular signal-regulated kinase 1/2 and AKT. It also down-regulated COL1A1, ACTA2 and TGFB1 expressions by inhibiting the transforming growth factor-β1/Smad2/3 pathway. Treatment with lenvatinib also suppressed platelet-derived growth factor-BB-stimulated proliferation, chemotaxis and vascular endothelial growth factor-A production, as well as basic fibroblast growth factor-induced LX-2 proliferation. In vivo study showed that lenvatinib attenuated liver fibrosis development with reduction in activated hepatic stellate cells and mRNA expression of profibrogenic markers. Intrahepatic neovascularization was ameliorated with reduced hepatic expressions of Vegf1, Vegf2 and Vegfa in lenvatinib-treated rats. Collectively, these results suggest the potential use of lenvatinib as a novel therapeutic strategy for liver fibrosis.  相似文献   

10.
11.
Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258+/-10 mg/dl peak blood ethanol concentration) or saline in a "3 days/wk binge" pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.  相似文献   

12.
Mouse thymocytes activated the alternative complement pathway of mouse serum in the presence of heated fetal calf serum. The activation required C3 from the fetal calf serum but was independent of antibody either in the murine or bovine serum. No other murine cells tested, including erythrocytes, peripheral blood lymphocytes, lymph node cells, spleen cells, and various cultured cell lines, activated the alternative complement pathway as effectively as thymocytes. In addition, sera from species other than cows could not substitute for fetal calf serum. The C3 deposited on thymocytes was in the form of both C3b (immune adherence positive) and C3bi (conglutinable). We propose that the basis of activation in this system is the specific protection of bovine C3b on mouse thymocyte surface.  相似文献   

13.
Transglutaminase2 (TGase2) activates Rho-associated kinase (ROCK), an important mediator of ischemia-reperfusion (IR) injury, through polyamination of RhoA. Cystamine, an oxidized dimer of cysteamine inhibits the transamidation activity of TGase2. We examined whether addition of cystamine to an organ preservation solution protects rat cardiomyocyte cells (H9C2) from cell death in IR injury. H9C2 cells were stored under hypoxic conditions at 4 °C in laboratory-made preservation solution (SNU) or SNU solution supplemented with cystamine (SNU-C1), and cell preservation in the two solutions was compared by measuring the release of lactate dehydrogenase. The cells were preserved more effectively in SNU-C1 than in SNU solution. Cystamine inhibited the intracellular activity of TGase2 which increased during cold storage or reoxygenation. The inhibition of TGase2 by cystamine reduced the polyamination of RhoA, the interaction between RhoA and ROCK2, and F-actin formation. Cystamine also prevented the activation of caspases during cold storage. These results suggest that addition of cystamine to the organ preservation solution significantly enhances cardiomyocytes preservation apparently by inhibiting TGase2-mediated RhoA-ROCK pathway and that TGase2 may play an important role in IR injury by regulating ROCK.  相似文献   

14.
Lipid accumulation is a central event in the development of chronic metabolic diseases, including obesity and type 2 diabetes, but the mechanisms responsible for lipid accumulation are incompletely understood. This study was designed to investigate the mechanisms for excess nutrient-induced lipid accumulation and whether activation of AMP-activated protein kinase (AMPK) prevents the hepatic lipid accumulation in excess nutrient-treated HepG2 cells and high fat diet (HFD)-fed mice. Exposure of HepG2 cells to high levels of glucose or palmitate induced the endoplasmic reticulum (ER) stress response, activated sterol regulatory element-binding protein-1 (SREBP-1), and enhanced lipid accumulation, all of which were sensitive to ER stress inhibitor and gene silencing of eukaryotic initiation factor 2α. The increases in ER stress response and lipid accumulation were associated with activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Inhibition of mTORC1 signaling attenuated the ER stress response and lipid accumulation induced by high glucose or by deletion of tuberous sclerosis 2. In addition, AMPK activation prevented the mTORC1 activation, ER stress response, and lipid accumulation. This effect was mimicked or abrogated, respectively, by overexpression of constitutively active and dominant-negative AMPK mutants. Finally, treatment of HFD-fed mice with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside inhibited the mTORC1 pathway, suppressed the ER stress response, and prevented insulin resistance and hepatic lipid accumulation. We conclude that activation of AMPK prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 and ER stress response.  相似文献   

15.
We investigated whether, in rats, gastric prostacyclin (PGI2) prevented gastric mucosal injury that was induced by water-immersion restraint stress by inhibiting leukocyte activation. Gastric levels of 6-keto-PGF1alpha, a stable metabolite of PGI2, increased transiently 30 min after stress, followed by a decrease to below the baseline 6-8 h after stress. Gastric mucosal blood flow decreased to approximately 40% of the baseline level 8 h after stress. Myeloperoxidase activity was significantly increased 8 h after stress. Treatment with indomethacin before stress inhibited the increase in 6-keto-PGF1alpha levels and markedly reduced mucosal blood flow. It also markedly increased leukocyte accumulation and mucosal lesion formation. Iloprost, a stable PGI2 analog, inhibited the indomethacin-induced decrease in mucosal blood flow, mucosal lesion exacerbation, and increase in leukocyte accumulation. Nitrogen mustard-induced leukocytopenia inhibited the indomethacin-associated lesion exacerbation and the increase in leukocyte accumulation, but not the decreases in mucosal blood flow. These observations indicate that gastric PGI2 decreases gastric mucosal lesion formation primarily by inhibiting leukocyte accumulation.  相似文献   

16.
17.
18.
19.
20.
Neuroinflammation is a major risk factor in Parkinson's disease (PD). Alternative approaches are needed to treat inflammation, as anti-inflammatory drugs such as NSAIDs that inhibit cyclooxygenase-2 (COX-2) can produce devastating side effects, including heart attack and stroke. New therapeutic strategies that target factors downstream of COX-2, such as prostaglandin J2 (PGJ2), hold tremendous promise because they will not alter the homeostatic balance offered by COX-2 derived prostanoids. In the current studies, we report that repeated microinfusion of PGJ2 into the substantia nigra of non-transgenic mice, induces three stages of pathology that mimic the slow-onset cellular and behavioral pathology of PD: mild (one injection) when only motor deficits are detectable, intermediate (two injections) when neuronal and motor deficits as well as microglia activation are detectable, and severe (four injections) when dopaminergic neuronal loss is massive accompanied by microglia activation and motor deficits. Microglia activation was evaluated in vivo by positron emission tomography (PET) with [11C](R)PK11195 to provide a regional estimation of brain inflammation. PACAP27 reduced dopaminergic neuronal loss and motor deficits induced by PGJ2, without preventing microglia activation. The latter could be problematic in that persistent microglia activation can exert long-term deleterious effects on neurons and behavior. In conclusion, this PGJ2-induced mouse model that mimics in part chronic inflammation, exhibits slow-onset PD-like pathology and is optimal for testing diagnostic tools such as PET, as well as therapies designed to target the integrated signaling across neurons and microglia, to fully benefit patients with PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号