首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have recently shown that synthetic rat atrial natriuretic factor (ANF) directly inhibits mineralocorticoid and glucocorticoid secretion in cultured bovine adrenal cells with a potency of 100 pM. [125I]iodo-ANF was used in the present study to characterize potential receptor sites in bovine zona glomerulosa membranes. ANF binds to a class of high affinity binding sites with a pK of 10.2 and a density of 1.3 pmol/mg protein. Detailed competition curves with ANF document a class of high affinity sites with a pK of 10.2 and also a second class of lower affinity sites with a pK of 8.5. Nonspecific binding amounts to less than 10% of [125I]iodo-ANF binding at concentrations less than 100 pM. High affinity binding of [125I]iodo-ANF is reversible with a half-time of association of 15 minutes at 25 pM and a half-time of dissociation of 140 minutes. Monovalent cations Na, Li and K equipotently enhance [125I]iodo-ANF specific binding. Divalent cations Mg, Ca and Mn also increase [125I]iodo-ANF specific binding, with Mn being the most active cation. No effect of guanine nucleotide could be detected on ANF binding. The binding of [125I]iodo-ANF is very specific and is not inhibited by 1 microM angiotensin II, ACTH, VIP, somatostatin, Leu-enkephalin, dynorphin or by the N-terminal of POMC. The N-terminal fragment ANF-(1-16) is also completely inactive. Reduction of the disulfide bridge of ANF inactivates the peptide. This enabled the development of a highly specific radio-receptor assay for ANF with a minimum detectable dose of 2 femtomoles. The results document the specific receptor involved in the potent inhibitory effect of ANF on adrenal steroidogenesis and indicate that bovine adrenal zonal glomerulosa provide a highly sensitive system for studying the recently discovered atrial natriuretic factor.  相似文献   

2.
The activity of various fragments of ANF as inhibitors of aldosterone secretion and as competitors of [125I] ANF (Arg101-Tyr126) binding to specific receptors was studied in bovine zona glomerulosa. Shortening or lengthening the N-terminal segment of ANF does not alter its biological activity while minimally altering affinity for its receptor. Removal of the C-terminal to Cys121 or expansion up to Arg128 leads to 1000-fold decrease in receptor affinity and activity. The results indicate the importance of the C-terminal segment of ANF in determining its active conformation.  相似文献   

3.
S Meloche  N McNicoll  B Liu  H Ong  A De Léan 《Biochemistry》1988,27(21):8151-8158
The atrial natriuretic factor (ANF) R1 receptor from bovine adrenal zona glomerulosa was solubilized with Triton X-100 and purified 13,000-fold, to apparent homogeneity, by sequential affinity chromatography on ANF-agarose and steric exclusion high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the purified receptor preparation in the absence or presence of dithiothreitol revealed a single protein band of Mr 130,000. Affinity cross-linking of 125I-ANF to the purified receptor resulted in the labeling of the Mr 130,000 band. The purified receptor bound ANF with a specific activity of 6.8 nmol/mg of protein, corresponding to a stoichiometry of 0.9 mol of ANF bound/mol of Mr 130,000 polypeptide. Starting with 500 g of adrenal zona glomerulosa tissue, we obtained more than 500 pmol of purified receptor with an overall yield of 9%. The purified receptor showed a typical ANF-R1 pharmacological specificity similar to that of the membrane-bound receptor. The homogeneous Mr 130,000 receptor protein displayed high guanylate cyclase activity [1.4 mumol of cyclic GMP formed min-1 (mg of protein)-1] which was not stimulated by ANF. This finding supports the notion that the ANF binding and the guanylate cyclase activities are intrinsic components of the same polypeptide. Finally, the purified ANF-R1 receptor retained its sensitivity to modulation by amiloride, suggesting the presence of an allosteric binding site for amiloride on the receptor protein.  相似文献   

4.
The effects of amiloride on the molecular characteristics of the atrial natriuretic factor (ANF) receptor from bovine adrenal zona glomerulosa were studied by computer modeling of competitive binding data, by affinity labeling experiments, and by steric exclusion high performance liquid chromatography of solubilized receptor. The order of potency of a series of truncated ANF analogs in competing for 125I-ANF binding to bovine adrenal zona glomerulosa membranes was the same as that obtained for inhibition of aldosterone secretion. Deletion of amino acids at the COOH-terminal end drastically reduced the affinities of the peptides. Computer analysis of competition curves revealed that all ANF analogs tested show similar binding characteristics: shallow competition curves, discrimination of varying proportions of high and low affinity binding states, and sensitivity to amiloride which increases the proportion of the high affinity binding component. These results from binding studies are suggestive of potential heterogeneity of ANF binding sites. In contrast, results from affinity cross-linking experiments are consistent with the notion of a single receptor protein. Incubation of membranes with increasing concentrations of 125I-ANF-(99-126) up to 3 nM resulted in the labeling of a single band of Mr 130,000. The ability of ANF analogs to compete for the labeling of the Mr 130,000 band by 125I-ANF-(99-126) agreed well with their potency as inhibitors of 125I-ANF binding to intact membranes. Addition of amiloride caused a dose-dependent increase in the labeling of the Mr 130,000 band. A single Mr 130,000 band was also labeled in bovine aorta and LLC-PK1 cell membranes. In order to further investigate the molecular basis for the apparent heterogeneity of ANF binding we have prelabeled the membrane receptor with 125I-ANF-(99-126) prior to solubilization with octyl-beta-D-glucoside and chromatography on a Superose 6 steric exclusion column. The elution profile of the prelabeled receptor consistently showed two peaks of radioactivity with mean Stokes radii of 70 and 50 A. When amiloride was added to the incubation medium, the elution profile consisted almost exclusively of the 70-A peak. Quantitative analysis of the chromatographic profiles revealed that amiloride increases by 2-3 times the area of the 70-A peak. We conclude that the 70-A form represents a ternary complex of the receptor with an amiloride-sensitive effector protein.  相似文献   

5.
Amiloride analogs with hydrophobic substitutions on the 5-amino nitrogen atom are relatively high affinity inhibitors of the plasma membrane Na(+)-H+ exchanger. We demonstrated that a high affinity-binding site for [3H]5-(N-methyl-N-isobutyl)amiloride ([3H]MIA) (Kd = 6.3 nM, Bmax = 1.2 pmol/mg of protein) is present in microvillus membrane vesicles but not in basolateral membrane vesicles isolated from rabbit renal cortex, in accord with the known membrane localization of the Na(+)-H+ exchanger in this tissue. The rank order potency for inhibition of microvillus membrane [3H]MIA binding by amiloride analogs was: MIA (I50 approximately 10 nM) greater than amiloride (I50 approximately 200 nM) greater than benzamil (I50 approximately 1200 nM). This correlated with a qualitatively similar rank order potency for inhibition of Na(+)-H+ exchange: MIA (I50 approximately 4 microM) greater than amiloride (I50 approximately 15 microM) greater than benzamil (I50 approximately 100 microM), but did not correlate with the rank order potency for inhibition of the organic cation-H+ exchanger in microvillus membrane vesicles: MIA approximately benzamil (I50 approximately 0.5 microM) greater than amiloride (I50 approximately 10 microM). However, tetraphenylammonium, an inhibitor of organic cation-H+ exchange, inhibited the rate of [3H]MIA binding without an effect on equilibrium [3H]MIA binding; the dissociation of bound [3H]MIA was inhibited by preloading the membrane vesicles with tetraphenylammonium. These findings indicated that high affinity [3H]MIA binding to renal microvillus membrane vesicles takes place at an internal site to which access is rate-limited by the tetraphenylammonium-sensitive organic cation transporter. Equilibrium [3H]MIA binding was inhibited by H+ but was unaffected by concentrations of Na+ or Li+ that saturate the external transport site of the Na(+)-H+ exchanger. Binding of MIA to its high affinity binding site had no effect on the rate of Na(+)-H+ exchange. This study suggests that the renal Na(+)-H+ exchanger has a high affinity internal binding site for amiloride analogs that is distinct from the external amiloride inhibitory site.  相似文献   

6.
A linear fragment of the atrial natriuretic factor, ANF(106-125), unable to form an intramolecular cystine bridge, was synthesized by the solid-phase method. The fragment showed smooth muscle relaxant activity in the rabbit aorta and chick rectum assays, an inhibitory effect on aldosterone secretion from bovine adrenal zona glomerulosa cells, and had affinity for specific ANF receptors located in zona glomerulosa cell membranes. The potency of ANF(106-125) in these four assay systems was about two to three orders of magnitude lower than that of ANF(103-125) which contains the intact cyclic structure. The obtained results indicate that the disulfide linkage stabilizes the bioactive conformation of ANF peptides but is not an absolute requirement for biological activity.  相似文献   

7.
We report the first demonstration of an Aldosterone Secretion Inhibitory Factor (ASIF) in acid extracts of bovine adrenal medulla. Following separation from catecholamines and enkephalins, this factor leads to an 80% inhibition of PGE1-stimulated secretion of aldosterone from bovine adrenal zona glomerulosa. ASIF is retained on cation exchange gels and behaves as a small 5K-dalton peptide on Sephadex G-50. This factor cross-reacts in a radio-receptor assay for [125I] atrial natriuretic factor (ANF). ASIF is distinct from all neuropeptides formerly detected in the adrenal medulla, e.g. somatostatin, enkephalin, neuropeptide Y, dynorphin, neurotensin. In the adrenal gland, this ANF-like factor is predominantly found in the medulla (4 pmol/mg protein), with only trace amounts in the cortex (0.1 pmol/mg protein). ASIF might perhaps correspond to the endogenous ligand for the receptor sites that we have previously identified with [125I]ANF in bovine adrenal cortex and could contribute to the formerly reported attenuating influence of the adrenal medulla on mineralocorticoid production.  相似文献   

8.
A single class of high-affinity binding sites for [125I]angiotensin III and [125I]angiotensin II were found in rat adrenal medulla and zona glomerulosa by quantitative autoradiography. In the medulla, Kd were 1.46 and 1.16 nM, and Bmax 1700 and 1700 fmol/mg protein, for [125I]angiotensin II and [125I]angiotensin III, respectively. In the zona glomerulosa, Kd were 0.86 and 0.90 nM, and Bmax 790 and 560 fmol/mg protein, for [125I]angiotensin II and [125I]angiotensin III, respectively. Unlabeled angiotensin III and angiotensin II displaced [125I]angiotensin III with similar potency in both adrenal zona glomerulosa and medulla. Our findings suggest that angiotensin III and angiotensin II might share the same binding sites in adrenal gland and support the hypothesis of a role for angiotensin III in the adrenal medulla and zona glomerulosa.  相似文献   

9.
Increased lung uptake of liposomes coated with polysaccharides   总被引:3,自引:0,他引:3  
The effect of amiloride on fluid and protein secretion in the isolated rabbit pancreas and on amylase secretion in rabbit pancreatic acini has been studied. Amiloride (1 mM) has no effect on the pancreatic fluid secretion either in a normal incubation medium (143 mM Na+), or in a medium containing only 25 mM Na+. The carbachol-induced enzyme secretion is inhibited by amiloride in both systems, whereas the enzyme secretion induced by the C-terminal octapeptide of cholecystokinin ( PzO ) is not affected. Amiloride also inhibits the carbachol-induced 45Ca efflux from rabbit pancreatic acini, but again not that induced by PzO . The amiloride concentrations for half-maximal inhibition of carbachol-induced amylase secretion and 45Ca efflux are 40 and 80 microM, respectively. Amiloride also competitively inhibits the specific binding of [3H]quinuclidinyl benzylate ( [3H]QNB) to rabbit pancreatic acini, suggesting that the amiloride effect is due to competition on the level of the muscarinic acetylcholine receptor.  相似文献   

10.
Binding sites for atrial natriuretic factor (ANF) were studied in kidneys and adrenal glands of 17 week old male spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) normotensive rats by quantitative autoradiography using 125I-ANF-28. In kidney, 125I-ANF-28 binding sites were found in high concentrations in glomeruli and in much lower concentrations in the renal papilla. In adrenal gland, 125I-ANF-28 binding sites were highly localized to the zona glomerulosa and were of moderate density in the inner cortical regions. ANF binding sites did not occur in the adrenal medulla. The maximum binding capacity (Bmax) of 125I-ANF-28 was reduced by 50% in the kidney glomeruli of SHRs compared to WKY controls. In contrast, the affinity constant (Ka) for 125I-ANF-28 was elevated by 100% in kidney glomeruli of SHRs. There were no significant strain differences in values for Bmax or Ka for 125I-ANF-28 binding in the adrenal zona glomerulosa. These findings suggest that the natriuretic and diuretic actions of ANF within kidney glomeruli may be compromised in adult SHR rats and these alterations may contribute to the development and maintenance of hypertension in rats of this strain.  相似文献   

11.
Amiloride, a potassium sparing diuretic, inhibits adenosine A1 receptor-radioligand binding in calf and rat brain membranes in the low micromolar range. The drug interacted with the A1 receptor in a manner different from classical A1 ligands, but structure-activity relationship studies indicated that this inhibitory effect is not related to the ion transport inhibiting properties of amiloride (Garritsen et al., 1990a,b) In the present study, the question is addressed how amiloride interacts with the adenosine A1 receptor. Amiloride and two of its analogues, in concentrations equivalent to their Ki values in displacement studies, decrease the affinity of the A1 antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine, but not the maximal binding capacity of the radioligand. Furthermore, the dissociation rate of the receptor-ligand complex is unaltered in the presence of amiloride or its analogues in a concentration exceeding the Ki value 10-fold. These characteristics argue for a purely competitive mode of interaction. The functional consequences of the interaction between amiloride analogues and the A1 receptor were investigated at the level of cyclic adenosine 3',5'-monophosphate (cAMP) formation. The amiloride analogue 5-(N-butyl-N-methyl) amiloride (MBA) reversed A1-receptor mediated inhibition of forskolin-stimulated cAMP formation in rat fat cell membranes. In this model, the antagonist potency of MBA is ca 5 microM. This value is in fair agreement with a Ki value of 3.5 microM in binding assays under similar conditions. In conclusion, amiloride inhibits A1 receptor binding in an apparently competitive manner. This suggests that the binding sites of amiloride and the classic A1 receptor ligands may at least partially overlap.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Peptides derived from various regions of the alpha 2A-adrenergic receptor (alpha 2A-AR) were used to study receptor-G protein interactions. Binding of the partial agonist [125I]-p-iodoclonidine and the full agonist [3H]bromoxidine (UK14,304) to membrane preparations from human platelet was potently reduced by peptides (12-14 amino acids) from the second cytoplasmic loop (A) and the C-terminal side of the third cytoplasmic loop (Q). Binding of the antagonist [3H]yohimbine was significantly less affected. Five other peptides had no significant effects on ligand binding at concentrations less than 100 microM. The IC50 values for peptides A and Q were 7 and 27 microM for [125I]-p-iodoclonidine binding at the platelet alpha 2A receptor, 15 and 71 microM for the neuroblastoma-glioma (NG108-15) alpha 2B receptor, and greater than 300 microM for yohimbine binding at both alpha 2A and alpha 2B receptors. Competition studies demonstrate that at concentrations of 100 microM, peptides A and Q reduce the affinity of bromoxidine for the platelet alpha 2A-AR and this effect was abolished in the presence of guanine nucleotide. Alpha 2A-AR-stimulated GTPase activity in platelet membranes was inhibited by peptide Q with an IC50 of 16 microM but A was inactive. These data suggest that both the second cytoplasmic loop and the C-terminal part of the third cytoplasmic loop of the alpha 2A-AR are important in the interaction between the alpha 2-AR and Gi protein. Peptide Q appears to destabilize the high affinity state of the alpha 2-AR by binding directly to Gi thus preventing it from coupling to the receptor under both binding and GTPase assay conditions. The peptide from the second cytoplasmic loop (A) also reduces high affinity agonist binding in a G protein-dependent manner but its interaction with receptor and G protein is distinct in that it does not prevent activation of the G protein. These results provide new information about regions of the alpha 2-adrenergic receptor involved in G protein coupling and high affinity agonist binding.  相似文献   

13.
Amiloride, a potassium sparing diuretic, is well known to interact with many ion transport systems and modulate the activity of several membrane receptors. However, relatively little information is available as to how amiloride affects membrane receptors of neurons in the brain areas. In the present study, we investigated the effects of amiloride on glycine-induced currents (I(Gly)) in cultured neurons of rat inferior colliculus with whole-cell patch-clamp recordings. Amiloride itself did not activate any current across the neuronal membrane but it reversibly inhibited the amplitude of the I(Gly) in a reversible and concentration-dependent manner, with an IC(50) of 487.4+/-25.3microM (n=5). Amiloride shifted the concentration-response relationship to the right without changing Hill coefficient and without changing the maximum response of the I(Gly). The pre-perfusion of amiloride produced an inhibitory effect on the I(Gly). In addition, amiloride was shown with a voltage ramp protocol to significantly reduce the conductance induced by glycine but not to change the reversal potential of the I(Gly). These results demonstrate that amiloride competitively inhibits the I(Gly) in rat inferior colliculus neurons by decreasing the affinity of glycine to its receptor. Our finding suggests that attention should be paid to the possible side effects of amiloride used as a drug on brain functions in the case of a defective blood-brain barrier and in the case of direct application of this drug into the cerebrospinal fluid for treatment of brain tumors.  相似文献   

14.
We investigated ANF binding and stimulation of cGMP accumulation in isolated rat glomerular membranes in the presence and absence of amiloride and ATP. Amiloride enhanced high affinity binding of ANF without affecting its stimulation of cGMP. In contrast ATP decreased binding and decreased basal cGMP accumulation without affecting the ability of ANF to stimulate cGMP. These data indicate that ANF binding and stimulation of cGMP accumulation can be regulated independently supporting further the concept of receptor heterogeneity in renal glomerular membranes.  相似文献   

15.
Photoaffinity labeling of the epithelial sodium channel   总被引:7,自引:0,他引:7  
Sodium enters tight epithelia across the apical plasma membrane through a sodium channel, a process inhibited by submicromolar concentrations of amiloride and benzamil. Using membrane vesicles from bovine kidney cortex, we found that sodium transport through the sodium channel was inhibited by benzamil with an IC50 of 4 nM. Amiloride (IC50 = 400 nM) was a weaker inhibitor of sodium transport. [3H]Benzamil bound to the vesicles at a single class of high affinity binding sites with a Kd of 5 nM, the similarity of which to the IC50 suggests that these binding sites are associated with the sodium channel. Amiloride displaced bound [3H]benzamil with a Ki of 2,500 nM. Bromobenzamil is a photoactive amiloride analog with potency similar to benzamil in inhibiting sodium transport (IC50 = 5 nM) and binding to the sodium channel (Kd = 6 nM). [3H]Bromobenzamil was specifically photoincorporated into three molecular weight classes of polypeptides with apparent Mr values of 176,000, 77,000, and 47,000. The photoincorporation of [3H]bromobenzamil into these three classes of polypeptides was blocked by addition of excess benzamil and by amiloride in a dose-dependent manner. These data suggest that these polypeptides are components of the epithelial sodium channel.  相似文献   

16.
The [125I]iodotyrosyl derivative of atrial natriuretic factor [( 125I])ANF) apparently binds to a single class of high affinity sites in guinea pig brain membrane preparations. Ligand selectivity pattern reveals that the structural requirements of brain [125I]ANF binding sites are similar to those reported in most peripheral tissues. In vitro receptor autoradiographic studies demonstrate that the brain distribution of [125I]ANF binding sites is species dependent. In rat, high levels of binding are found in olfactory bulb, subfornical organ, area postrema, choroid plexus, and ependyma. In guinea pig, these regions are also enriched with [125I]ANF binding in addition to various thalamic nucleic, amygdala, hippocampus, and cerebellum. In monkey, high densities of sites are seen in the cerebellar cortex. This suggests that brain ANF receptor sites could mediate ANF effects related to the central integration of cardiovascular parameters, as well as other actions not associated with these systems. As in the periphery, it appears that brain [125I]ANF binding sites are associated with guanylate cyclase. Moreover, the density of [125I]ANF receptor binding sites is altered in certain brain regions in spontaneously hypertensive rats and in cardiomyopathic hamsters, demonstrating the plasticity of brain ANF receptors. Thus, ANF and ANF receptors are complementary facets of a new neurotransmitter-neuromodulator system present in mammalian brain.  相似文献   

17.
We have previously determined that atrial natriuretic factor (ANF) is a potent inhibitor of steroid secretion in cultured bovine zona glomerulosa and fasciculata cells. The present report describes a comparison of the effect produced by ANF on aldosterone, deoxycorticosterone and progesterone secretions by zona glomerulosa cells and on cortisol, corticosterone and progesterone secretions by zona fasciculata cells. The equipotent inhibitory action of ANF on the stimulated secretion of these steroids in both cell types indicates a common site of action prior to progesterone synthesis at which ANF inhibits the steroidogenic pathway.  相似文献   

18.
Characterization of gingival epithelium epidermal growth factor receptor   总被引:1,自引:0,他引:1  
The binding characteristics of gingival epithelium epidermal growth factor (EGF) receptor were investigated using epithelial cell membranes from bovine gingiva. The binding of [125I]EGF was found to be time and protein concentration dependent, reversible, and specific. Unlabeled EGF competed for [125I]EGF binding with IC50 of 0.25nM and maximum displacement of 93% at 0.81nM. Scatchard analysis of the binding data inferred the presence of two binding sites, one of high affinity (Kd = 3.3 nM and Bmax = 47.3fmol/mg protein) and the other of a low affinity (Kd = 1.6 microM and Bmax = 1.9pmol/mg protein). Crosslinking of [125I]EGF to gingival membranes followed by polyacrylamide gel electrophoresis and autoradiography revealed a receptor protein of 170kDa.  相似文献   

19.
Atrial natriuretic factor (ANF) binding sites in frog kidney and adrenal.   总被引:1,自引:0,他引:1  
W Kloas  W Hanke 《Peptides》1992,13(2):297-303
Atrial natriuretic factor (ANF) binding sites were localized and quantified in kidney and adrenal of the frog Rana temporaria by quantitative in vitro autoradiography. [125I]-rat ANF(99-126) binding was present in kidney glomeruli and in the outer layer of interrenal tissue in the adrenal gland. ANF binding exhibited positive cooperativity with a half-maximal binding concentration (EC50) of 102 +/- 16 pM in glomeruli and 93 +/- 19 pM in interrenal tissue (n = 8). The corresponding maximal binding capacities (Bmax) were 1.33 +/- 0.16 and 1.21 +/- 0.36 fmol/mm2. [125I]-Rat ANF(99-126) binding was competitively displaced by unlabeled ANF analogues with an intact disulfide bridge showing a lower affinity than the iodinated ligand. The presence of ANF binding in glomeruli and steroidogenic interrenal cells suggests physiological functions of ANF for the osmomineral regulation in the frog by influencing glomerular filtration rate and adrenal steroid secretion.  相似文献   

20.
The catecholamine release-inhibitory chromogranin A fragment catestatin (chromogranin A(344-364)) exhibits non-competitive antagonism of nicotinic cholinergic signaling in chromaffin cells. A previous homology model of catestatin's likely structure suggested a mode of interaction of the peptide with the nicotinic receptor, but direct evidence has been lacking. Here we found that [125I]-catestatin binds to the surface of intact PC12 and bovine chromaffin cells with high affinity (K(D)=15.2+/-1.53 nM) and specificity (lack of displacement by another [N-terminal] fragment of chromogranin A). Nicotinic agonist (carbamylcholine) did not displace [125I]-catestatin from chromaffin cells, nor did catestatin displace the nicotinic agonist [3H]-epibatidine; these observations indicate a catestatin binding site separate from the agonist binding pocket on the nicotinic receptor, a finding consistent with catestatin's non-competitive nicotinic mechanism. [125I]-catestatin could be displaced from chromaffin cells by substance P (IC(50) approximately 5 microM), though at far lower potency than displacement by catestatin itself (IC(50) approximately 350-380 nM), suggesting that catestatin and substance P occupy an identical or overlapping non-competitive site on the nicotinic receptor, at different affinities (catestatin > substance P). Small, non-peptide non-competitive nicotinic antagonists (hexamethonium or clonidine) did not diminish [125I]-catestatin binding, suggesting distinct non-competitive binding sites on the nicotinic receptor for peptide and non-peptide antagonists. Similar binding and inhibitory profiles for [125I]-catestatin were observed on chromaffin cells as well as nicotinic receptor-enriched Torpedo membranes. Covalent cross-linking of [125I]-catestatin to Torpedo membranes suggested specific contacts of [125I]-catestatin with the delta, gamma, and beta subunits of the nicotinic receptor, a finding consistent with prior homology modeling of the interaction of catestatin with the extracellular face of the nicotinic heteropentamer. We conclude that catestatin occludes the nicotinic cation pore by interacting with multiple nicotinic subunits at the pore vestibule. Such binding provides a physical explanation for non-competitive antagonism of the peptide at the nicotinic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号