共查询到20条相似文献,搜索用时 15 毫秒
1.
S Seki M Hatsushika S Watanabe K Akiyama K Nagao K Tsutsui 《Biochimica et biophysica acta》1992,1131(3):287-299
cDNA encoding the human homologue of mouse APEX nuclease was isolated from a human bone-marrow cDNA library by screening with cDNA for mouse APEX nuclease. The mouse enzyme has been shown to possess four enzymatic activities, i.e., apurinic/apyrimidinic endonuclease, 3'-5' exonuclease, DNA 3'-phosphatase and DNA 3' repair diesterase activities. The cDNA for human APEX nuclease was 1420 nucleotides long, consisting of a 5' terminal untranslated region of 205 nucleotide long, a coding region of 954 nucleotide long encoding 318 amino acid residues, a 3' terminal untranslated region of 261 nucleotide long, and a poly(A) tail. Determination of the N-terminal amino acid sequence of APEX nuclease purified from HeLa cells showed that the mature enzyme lacks the N-terminal methionine. The amino acid sequence of human APEX nuclease has 94% sequence identity with that of mouse APEX nuclease, and shows significant homologies to those of Escherichia coli exonuclease III and Streptococcus pneumoniae ExoA protein. The coding sequence of human APEX nuclease was cloned into the pUC18 SmaI site in the control frame of the lacZ promoter. The construct was introduced into BW2001 (xth-11, nfo-2) strain and BW9109 (delta xth) strain cells of E. coli. The transformed cells expressed a 36.4 kDa polypeptide (the 317 amino acid sequence of APEX nuclease headed by the N-terminal decapeptide derived from the part of pUC18 sequence), and were less sensitive to methylmethanesulfonate and tert-butyl-hydroperoxide than the parent cells. The N-terminal regions of the constructed protein and APEX nuclease were cleaved frequently during the extraction and purification processes of protein to produce the 31, 33 and 35 kDa C-terminal fragments showing priming activities for DNA polymerase on acid-depurinated DNA and bleomycin-damaged DNA. Formation of such enzymatically active fragments of APEX nuclease may be a cause of heterogeneity of purified preparations of mammalian AP endonucleases. Based on analyses of the deduced amino acid sequence and the active fragments of APEX nuclease, it is suggested that the enzyme is organized into two domains, a 6 kDa N-terminal domain having nuclear location signals and 29 kDa C-terminal, catalytic domain. 相似文献
2.
S Seki S Ikeda S Watanabe M Hatsushika K Tsutsui K Akiyama B Zhang 《Biochimica et biophysica acta》1991,1079(1):57-64
A mouse repair enzyme having priming activity on bleomycin-damaged DNA for DNA polymerase was purified to apparent homogeneity and characterized. The enzyme extracted from permeabilized mouse ascites sarcoma (SR-C3H/He) cells with 0.2 M potassium phosphate buffer (pH 7.5) was purified by successive chromatographies on phosphocellulose, DEAE-cellulose, phosphocellulose (a second time), Sephadex G-100, single-stranded DNA cellulose and hydroxyapatite. The purified enzyme has an Mr of 34,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzymatical studies indicated that it is a multifunctional enzyme having exonuclease, apurinic/apyrimidinic endonuclease and phosphatase activities, similar to Escherichia coli exonuclease III. This enzyme is tentatively designated as APEX nuclease for apurinic/apyrimidinic endonuclease and exonuclease activities. The amino acid composition, amino-terminal amino acid sequence and an internal amino acid sequence of APEX nuclease are determined. 相似文献
3.
Cloned mouse ribonucleotide reductase subunit M1 cDNA reveals amino acid sequence homology with Escherichia coli and herpesvirus ribonucleotide reductases 总被引:16,自引:0,他引:16
I W Caras B B Levinson M Fabry S R Williams D W Martin 《The Journal of biological chemistry》1985,260(11):7015-7022
We have isolated and sequenced overlapping cDNA clones containing the entire coding region of mouse ribonucleotide reductase subunit M1. The coding region comprises 2.4 kilobases and predicts a polypeptide of 792 amino acids (Mr 90,234) which shows striking homology with ribonucleotide reductases from Escherichia coli and the herpesviruses, Epstein-Barr virus and herpes simplex virus. The homologies reveal three domains: an N-terminal domain common to the mammalian and bacterial enzymes, a C-terminal domain common to the mammalian and viral ribonucleotide reductases, and a central domain common to all three. We speculate on the functional basis of this conservation. 相似文献
4.
5.
Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. 总被引:7,自引:0,他引:7 下载免费PDF全文
A cDNA clone for cystathionine gamma-lyase was isolated from a rat cDNA library in lambda gt11 by screening with a monospecific antiserum. The identity of this clone, containing 600 bp proximal to the 3'-end of the gene, was confirmed by positive hybridization selection. Northern-blot hybridization showed the expected higher abundance of the corresponding mRNA in liver than in brain. Two further cDNA clones from a plasmid pcD library were isolated by colony hybridization with the first clone and were found to contain inserts of 1600 and 1850 bp. One of these was confirmed as encoding cystathionine gamma-lyase by hybridization with two independent pools of oligodeoxynucleotides corresponding to partial amino acid sequence information for cystathionine gamma-lyase. The other clone (estimated to represent all but 8% of the 5'-end of the mRNA) was sequenced and its deduced amino acid sequence showed similarity to those of the Escherichia coli enzymes cystathionine beta-lyase and cystathionine gamma-synthase throughout its length, especially to that of the latter. 相似文献
6.
Nucleotide sequence of Escherichia coli purF and deduced amino acid sequence of glutamine phosphoribosylpyrophosphate amidotransferase 总被引:26,自引:0,他引:26
J Y Tso H Zalkin M van Cleemput C Yanofsky J M Smith 《The Journal of biological chemistry》1982,257(7):3525-3531
The Escherichia coli gene purF, coding for 5-phosphoribosylamine:glutamine pyrophosphate phosphoribosyltransferase (amidophosphoribosyltransferase) was subcloned from a ColE1-purF plasmid into pBR322. Amidophosphoribosyltransferase levels were elevated more than 5-fold in the ColE1-purF plasmid-bearing strain compared to the wild type control, and a further 10- to 13-fold elevation was observed in several pBR322 derivatives. The nucleotide sequence of a 2478-base pair PvuI-HinfI fragment encoding purF was determined. The purF45 structural gene codes for a 56,395 Mr protein chain having 504 amino acid residues. Methionine-1 is removed by processing in vivo leaving cysteine as the NH2-terminal residue. The deduced amino acid sequence was confirmed by comparisons with the NH2-terminal amino acid sequence determined by automated Edman degradation (Tso, J. Y., Hermodson, M. A., and Zalkin, H. (1982) J. Biol. Chem. 257, 3532-3536) and amino acid analyses of CNBr peptides including a 4-residue peptide from the CO2H terminus of the enzyme. Nucleotide sequences characteristic of bacterial promoter-operator regions were identified in the 5' flanking region. The coding region appears to be preceded by a 277-297 nucleotide mRNA leader. A deletion removing the putative promoter-operator region results in defective purF expression. 相似文献
7.
8.
Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III 总被引:6,自引:0,他引:6
A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO4-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants. 相似文献
9.
Nucleotide sequence and deduced amino acid sequence of Escherichia coli pyruvate oxidase, a lipid-activated flavoprotein. 总被引:5,自引:0,他引:5 下载免费PDF全文
The entire nucleotide sequence of the poxB (pyruvate oxidase) gene of Escherichia coli K-12 has been determined by the dideoxynucleotide (Sanger) sequencing of fragments of the gene cloned into a phage M13 vector. The gene is 1716 nucleotides in length and has an open reading frame which encodes a protein of Mr 62,018. This open reading frame was shown to encode pyruvate oxidase by alignment of the amino acid sequences deduced for the amino and carboxy termini and several internal segments of the mature protein with sequences obtained by amino acid sequence analysis. The deduced amino acid sequence of the oxidase was not unusually rich in hydrophobic sequences despite the peripheral membrane location and lipid binding properties of the protein. The codon usage of the oxidase gene was typical of a moderately expressed protein. The deduced amino acid sequence shares homology with the large subunits of the acetohydroxy acid synthase isozymes I, II, and III, encoded by the ilvB, ilvG, and ilvI genes of E. coli. 相似文献
10.
11.
Branched-chain amino acid aminotransferase of Escherichia coli: nucleotide sequence of the ilvE gene and the deduced amino acid sequence 总被引:6,自引:0,他引:6
The ilvE gene of the Escherichia coli K-12 ilvGEDA operon, which encodes branched-chain amino acid aminotransferase [EC 2.6.1.42], was cloned. The nucleotide sequence of 1.5 kilobase pairs containing the gene was determined. The coding region of the ilvE gene contained 927 nucleotide residues and could encode 309 amino acid residues. The predicted molecular weight, amino acid composition and the sequence of the N-terminal 15 residues agreed with the enzyme data reported previously (Lee-Peng, F.-C., et al. (1979) J. Bacteriol. 139, 339-345). From the deduced amino acid sequence, the secondary structure was predicted. 相似文献
12.
13.
Amino acid sequence of Escherichia coli glutamine synthetase deduced from the DNA nucleotide sequence 总被引:17,自引:0,他引:17
Glutamine synthetase is encoded by the glnA gene of Escherichia coli and catalyzes the formation of glutamine from ATP, glutamate, and ammonia. A 1922-base pair fragment from a cDNA containing the glnA structural gene for E. coli glutamine synthetase has been sequenced. An open reading frame of 1404 base pairs encodes a protein of 468 amino acid residues with a calculated molecular weight of 51,814. With few exceptions, the amino acid sequence deduced from the DNA sequence agreed very well with the amino acid sequences of several peptides reported previously. The secondary structure predicted for the E. coli enzyme has approximately 36% of the residues in alpha-helices which is in agreement with calculations of approximately 39% based on optical rotatory dispersion data. Comparison of the amino acid sequences of glutamine synthetase from E. coli (468 amino acids) and Anabaena (473 amino acids) (Turner, N. E., Robinson, S. T., and Haselkorn, R. (1983) Nature 306, 337-342) indicates that 260 amino acids are identical and 80 are of the same type (polar or nonpolar) when aligned for maximum homology. Several homologous regions of these two enzymes exist, including the sites of adenylylation and oxidative modification, but the regulation of each enzyme is different. 相似文献
14.
Serge Lapointe Christine Lgar Christian Gaudreault Robert Sullivan Marc-Andr Sirard 《Molecular reproduction and development》1998,51(3):265-273
A bovine oviductal fluid catalase (OFC) which preferentially binds to the acrosome surface of some mammalian spermatozoa has recently been purified. The objectives of this study were to clone the OFC, obtain the full-length cDNA and protein sequence and determine which characteristics of the proteins are associated with the binding of the enzyme to sperm surface. Northern blot analysis revealed low levels of catalase mRNA in bovine oviducts and uterus compared to the liver and kidney. Screening of a cDNA library from the cow oviduct permit to obtain a full-length cDNA of 2282 bp, with an open reading frame of 1581 bp coding for a deduced protein of 526 amino acids (59 789 Da). The deduced protein contained four potential N-glycosylation sites and many potential O-glycosylation sites. The OFC protein exhibited high identity with catalase from other bovine tissues, likewise with catalases from human fibroblast and kidney, and with rat liver catalase. The homology of amino acid sequence of OFC with bovine liver catalase was about 99%. However the OFC posses an extended carboxyl terminus of 20 amino acids not present on the liver catalase. This result is supported by a lower mobility of the OFC compared to the liver catalase when both proteins are submitted on SDS-PAGE. Mol. Reprod. Dev. 51:265–273, 1998. © 1998 Wiley-Liss, Inc. 相似文献
15.
16.
17.
Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver arginase 总被引:5,自引:0,他引:5
S Kawamoto Y Amaya K Murakami F Tokunaga S Iwanaga K Kobayashi T Saheki S Kimura M Mori 《The Journal of biological chemistry》1987,262(13):6280-6283
Arginase (EC 3.5.3.1) catalyzes the last step of urea synthesis in the liver of ureotelic animals. The nucleotide sequence of rat liver arginase cDNA, which was isolated previously (Kawamoto, S., Amaya, Y., Oda, T., Kuzumi, T., Saheki, T., Kimura, S., and Mori, M. (1986) Biochem. Biophys. Res. Commun. 136, 955-961) was determined. An open reading frame was identified and was found to encode a polypeptide of 323 amino acid residues with a predicted molecular weight of 34,925. The cDNA included 26 base pairs of 5'-untranslated sequence and 403 base pairs of 3'-untranslated sequence, including 12 base pairs of poly(A) tract. The NH2-terminal amino acid sequence, and the sequences of two internal peptide fragments, determined by amino acid sequencing, were identical to the sequences predicted from the cDNA. Comparison of the deduced amino acid sequence of the rat liver arginase with that of the yeast enzyme revealed a 40% homology. 相似文献
18.
Cyclopropane fatty acid (CFA) synthase of Escherichia coli catalyzes a modification of the acyl chains of phospholipid bilayers. We report (i) identification of the CFA synthase protein, (ii) overproduction (> 600-fold) and purification to essential homogeneity of the enzyme, and (iii) the amino acid sequence of CFA synthase as deduced from the nucleotide sequence of the cfa gene. CFA synthase was overproduced by use of the T7 promoter/RNA polymerase system under closely defined conditions. The enzyme was readily purified by a two-step procedure requiring only ammonium sulfate fractionation and binding to phospholipid vesicles followed by flotation in sucrose density gradients. The deduced amino acid sequence predicts a protein of 43,913 Da (382 residues) that lacks long hydrophobic segments. The CFA synthase sequence has no significant similarity to known proteins except for sequences found in other enzymes that utilize S-adenosyl-L-methionine. We also report inhibitor studies of the enzyme active site. 相似文献
19.
20.
O Platica R Janeczko E V Quadros A Regec R Romain S P Rothenberg 《The Journal of biological chemistry》1991,266(12):7860-7863
The cellular uptake of cobalamin (Cbl, vitamin B12) is mediated by transcobalamin II (TCII), a plasma protein that binds Cbl and is secreted by human umbilical vein endothelial (HUVE) cells. These cells synthesize and secrete TCII and, therefore, served as the source of the complementary DNA (cDNA) library from which the TCII cDNA was isolated. This full-length cDNA consists of 1866 nucleotides that code for a leader peptide of 18 amino acids, a secreted protein of 409 amino acids, a 5'-untranslated segment of 37 nucleotides, and a 3'-untranslated region of 548 nucleotides. A single 1.9-kilobase species of mRNA corresponding to the size of the cDNA was identified by Northern blot analysis of the RNA isolated from HUVE cells. TCII has 20% amino acid homology and greater than 50% nucleotide homology with human transcobalamin I (TCI) and with rat intrinsic factor (R-IF). TCII has no homology with the amino-terminal region of R-IF that has been reported to have significant primary as well as secondary structural homology with the nucleotide-binding domain of NAD-dependent oxidoreductases. The regions of homology that are common to all three proteins are located in seven domains of the amino acid sequence. One or more of these conserved domains is likely to be involved in Cbl binding, a function that is common to all three proteins. However, the difference in the affinity of TCII, TCI, and R-IF for Cbl and Cbl analogues indicates, a priori, that structural differences in the ligand-binding site of these proteins exist and these probably resulted from divergence of a common ancestral gene. 相似文献