首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have proposed previously that the polysialic acid (PSA) moiety of NCAM can influence membrane-membrane apposition, and thereby serve as a selective regulator of a variety of contact-dependent cell interactions. In this study, cell and tissue culture models are used to obtain direct evidence that the presence of PSA on the surface membrane can affect both cell-cell and cell-substrate interactions. Using a neuroblastoma/sensory neuron cell hybrid, it was found that removal of PSA with a specific neuraminidase (endo-N) augments cell-cell aggregation mediated by the L1 cell adhesion molecule as well as cell attachment to a variety of tissue culture substrates. In studies of embryonic spinal cord axon bundling, which involves both cell-cell and cell-substrate interactions, the pronounced defasciculation produced by removal of PSA is most easily explained by an increase in cell-substrate interaction. The fact that in both studies NCAM's intrinsic adhesion function was found not to be an important variable further illustrates that regulation of the cell surface by PSA can extend beyond binding mediated by the NCAM polypeptide.  相似文献   

3.
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) appeared during the evolution of vertebrates as a new mechanism for regulation of cell interactions. This large and abundant glycoprotein can exert steric effects at the cell surface that lead to the attenuation of cell-cell bonds mediated not only by NCAM but also a variety of other adhesion receptors. PSA-NCAM expression changes both as a result of developmental programs and physiological inputs. This global modulation of cell-cell attachment has been shown to facilitate cell migration, axon pathfinding and targeting, and plastic changes in the embryonic and adult nervous system.  相似文献   

4.
Intercellular space is affected by the polysialic acid content of NCAM   总被引:10,自引:0,他引:10       下载免费PDF全文
We have previously proposed that polysialic acid (PSA), which is attached to NCAM on the cell surface, can serve to regulate a variety of cell-cell interactions. The present study provides evidence that hydrated PSA influences a sufficiently large volume at the cell surface to exert broad steric effects, and that the removal of PSA in fact causes a detectable change in intercellular space. Using F11 neuron/neuroblastoma hybrid cells as a model system, the measured density and size of PSA suggests that a substantial fraction of the space between two apposed cell surface membranes could be sterically influenced by the presence of PSA. Specific enzymatic removal of PSA, which is similar in magnitude to changes that occur in many tissues during normal development, caused about a 25% decrease in the distance between two apposed cells. By contrast, removal of both heparan sulfate and chondroitin sulfate from the cells had no effect on this parameter. It is proposed that such changes in membrane-membrane distance could serve to alter selectively the efficiency of encounter between complementary receptors on apposing cells, and explain at least in part the broad biological influences of PSA.  相似文献   

5.
Our previous studies indicated that regulation of N-cadherin expression differs spatially and temporally among tissues of the eye, possibly reflecting the distinct roles it has in the development and maintenance of eye tissues. To understand this regulation of N-cadherin expression and its function in different tissues during embryonic development, we investigated the post-translational modifications of N-cadherin and its association with the cytoskeleton. We show that N-cadherin is a sulfated and phosphorylated protein. The phosphorylation of N-cadherin occurs in an age- and tissue-specific pattern during development in the neural retina, brain, lens and heart. The extent of sulfation of N-cadherin is also age-dependent, and both sulfated and unsulfated pools of N-cadherin exist in the same tissue as indicated by two-dimensional electrophoresis. The degree of association of N-cadherin with the cytoskeleton differs from one tissue to another, as well as within a single tissue at different stages of development. A positive correlation was found between the extent, developmental timing, and tissue specificity of N-cadherin phosphorylation and the degree of N-cadherin association with the cytoskeleton. Our results suggest the existence of a microheterogeneous population of N-cadherin molecules, within which posttranslational modification of N-cadherin may affect its association with the cytoskeleton and its expression and function during development.  相似文献   

6.
Regulation of CDPK isoforms during tuber development   总被引:6,自引:0,他引:6  
CDPK activities present during tuber development were analysed. A high CDPK activity was detected in the soluble fraction of early stolons and a lower one was detected in soluble and particulate fractions of induced stolons. The early and late CDPK activities displayed diverse specificity for in vitro substrates and different subcellular distribution. Western blot analysis revealed two CDPKs of 55 and 60 kDa that follow a precise spatial and temporal profile of expression. The 55 kDa protein was only detected in early-elongating stolons and the 60 kDa one was induced upon stolon swelling, correlating with early and late CDPK activities. A new member of the potato CDPK family, StCDPK3, was identified from a stolon cDNA library. Gene specific RT-PCR demonstrated that this gene is only expressed in early stolons, while the previously identified StCDPK1 is expressed upon stolon swelling. This expression profile suggests that StCDPK3 could correspond to the 55 kDa isoform while StCDPK1 could encode the 60 kDa isoform present in swelling stolons. StCDPK1 has myristoylation and palmitoylation consensus possibly involved in its dual intracellular localization. Transient expression studies with wild-type and mutated forms of StCDPK1 fused to GFP were used to show that subcellular localization of this isoform is controlled by myristoylation and palmitoylation. Altogether, our data suggest that sequential activation of StCDPK3 and StCDPK1 and the subcellular localisation of StCDPK1 might be critical regulatory steps of calcium signalling during potato tuber development.  相似文献   

7.
Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic day 7 (E7) and E11 chick embryos depended on the function of a calcium-dependent cell adhesion molecule (N-cadherin) and beta 1-class integrin extracellular matrix receptors. The inhibitory effects of either antibody on process extension could not be accounted for by a reduction in the attachment of neurons to astrocytes. The role of a third cell adhesion molecule, NCAM, changed during development. Anti-NCAM had no detectable inhibitory effects on neurite outgrowth by E7 retinal neurons. In contrast, E11 retinal neurite outgrowth was strongly dependent on NCAM function. Thus, N-cadherin, integrins, and NCAM are likely to regulate axon extension in the optic pathway, and their relative importance varies with developmental age.  相似文献   

8.
Polysialic acid (PSA), a carbohydrate epitope attached to the neural cell adhesion molecule, serves as a modulator of axonal interactions during vertebrate nervous system development. We have used PSA-specific antibodies and whole-mount immunocytochemistry to describe the spatiotemporal expression pattern of PSA during zebrafish central nervous system development. PSA is transiently expressed on all cell bodies and, except for the posterior commissure, it is not found on axons. Floorplate cells in the spinal cord and hindbrain strongly express PSA throughout development. Enzymatic removal of PSA leads to a defasciculated growth pattern of the posterior commissure and also affects distinct subsets of commissural axons in the hindbrain, which fail to cross the midline. Whereas the disordered growth pattern of hindbrain commissures produced by PSA-removal could be mimicked by injections of soluble PSA, the growth of axons in the posterior commissure was unaffected by such treatment. These results suggest that there are distinct mechanisms for PSA action during axon growth and pathfinding in the developing zebrafish CNS.  相似文献   

9.
10.
The neural cell adhesion molecule (NCAM) plays important roles during development, plasticity, and regeneration in the adult nervous system. Its function is strongly influenced by attachment of the unusual alpha 2-8-linked polysialic acid (PSA). Here we analyzed the N-glycosylation pattern of polysialylated NCAM from brains of newborn calves. Purified PSA-NCAM glycoprotein was digested with trypsin, and PSA-glycopeptides were separated by immunoaffinity chromatography. For determining the N-glycosylation sites, PNGase F-treated glycopeptides were analyzed by Edman degradation and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). They were found to be exclusively linked to the fifth (Asn 439) and sixth (Asn 468) N-glycosylation sites in the fifth immunoglobulin-like domain of NCAM. The chain length of PSA consisted of at least 30 sialic acid residues, as shown by anion exchange chromatography. For analysis of the core structures, endoneuraminidase N-treated PSA-NCAM was separated by SDS-PAGE and digested with PNGase F. The core structures of polysialylated glycans were characterized by MALDI-MS combined with exoglycosidase digestions and chromatographic fractionation. They include hybrid, di-, tri-, and small amounts of tetraantennary carbohydrates, which were all fucosylated at the innermost N-acetylglucosamine. For the triantennary glycans, the "2,6" arm was preferred in polysialylated structures. High levels of sulfated groups were found on polysialylated structures and to a lower extent also on nonpolysialylated glycans. In addition, high-mannose-type glycans could be detected on PSA-NCAM glycoforms ranging from (GlcNAc)(2)(Man)(5) up to (GlcNAc)(2)(Man)(9). In conclusion, we observed a structural variability and high regional selectivity for the PSA-glycans attached to the NCAM molecule that are most likely influencing its biological functions.  相似文献   

11.
Cell adhesion molecule (CAM) expression is highly regulated during nervous system development to control cell migration, neurite outgrowth, fasciculation, and synaptogenesis. Using electrical stimulation of mouse dorsal root ganglion (DRG) neurons in cell culture, this work shows that N-cadherin expression is regulated by neuronal firing, and that expression of different CAMs is regulated by distinct patterns of neural impulses. N-cadherin was down-regulated by 0.1 or 1 Hz stimulation, but NCAM mRNA and protein levels were not altered by stimulation. L1 was down-regulated by 0.1 Hz stimulation, but not by 0.3 Hz, 1 Hz, or pulsed stimulation. N-cadherin expression was lowered with faster kinetics than L1 (1 vs. 5 days), and L1 mRNA returned to higher levels after terminating the stimulus. The RSLE splice variant of L1 was not regulated by action potential stimulation, and activity-dependent influences on L1 expression were blocked by target-derived influences. The results are consistent with changes in firing pattern accompanying DRG development and suggest that functional activity can influence distinct developmental processes by regulating the relative abundance of different CAMs. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 735–748, 1997
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    12.
    We evaluated by immunohistochemistry the expression of progesterone receptor (PR) isoforms in different cell subpopulations of the ovary of newly-hatched chicks after a treatment with Follicle-stimulating hormone (FSH) or Luteinizing hormone (LH) administered on days 13, 15 and 17 of embryonic development. Two monoclonal antibodies that recognize either both PR isoforms or only PR-B, were used. The results indicate that FSH increased both the total number of cells and the number of PR-immunoreactive ones in all cell subpopulations of the ovary. In all cases, PR-B was the isoform regulated by FSH. In contrast, LH did not modify the number of total cells in any cell subpopulations of the ovary. Besides, LH decreased the number of PR-B immunoreactive interstitial cells, without modifying PR expression in any other cell subpopulations of the ovary. These results reveal differential effects of FSH and LH on PR-expression in cell subpopulations of the ovary of newly hatched chicks treated during embryonic development. We conclude that gonadotropins regulate PR-B isoform in the prefollicular ovary of the chick.  相似文献   

    13.
    14.
    We have investigated the time course of expression of the alpha and beta triad junctional foot proteins in embryonic chick pectoral muscle. The level of [3H]ryanodine binding in muscle homogenates is low until day E20 of embryonic development, then increases dramatically at the time of hatching reaching adult levels by day N7 posthatch. The alpha and beta foot protein isoforms increase in abundance concomitantly with [3H]ryanodine binding. Using foot protein isoform-specific antibodies, the alpha foot protein is detected in a majority of fibers in day E10 muscle, while the beta isoform is first observed at low levels in a few fibers in day E15 muscle. A high molecular weight polypeptide, distinct from the alpha and beta proteins, is recognized by antifoot protein antibodies. This polypeptide is observed in day E8 muscle and declines in abundance with continued development. It appears to exist as a monomer and does not bind [3H]ryanodine. In contrast, the alpha isoform present in day E10 muscle and the beta isoform in day E20 muscle are oligomeric and bind [3H]ryanodine suggesting that they may exist as functional calcium channels in differentiating muscle. Comparison of the intracellular distributions of the alpha foot protein, f-actin, the heavy chain of myosin and titin in day E10 muscle indicates that the alpha foot protein is expressed during myofibril assembly and Z line formation. The differential expression of the foot protein isoforms in developing muscle, and their continued expression in mature muscle, is consistent with these proteins making different functional contributions. In addition, the expression of the alpha isoform during the time of organization of a differentiated muscle morphology suggests that foot proteins may participate in events involved in muscle differentiation.  相似文献   

    15.
    16.
    We have investigated developmental profiles of ATP-dependent palmityl-CoA synthetase, acetyl-CoA synthetase, palmitylcarnitine transferase, and fatty acid oxidation in heart and liver of developing chicks and rats. Palmityl-CoA synthetase activity of rat liver and heart homogenates increased 6- to 10-fold during the first postnatal week. Chick embryo heart activity peaked between 13 and 16 days of development. The activity of embryonic chick livers was bimodal with highest activity seen at 7 and 16 days of development. Posthatching values were approximately 50–75% of the peak embryonic levels. Acetyl-CoA synthetase activity of rat liver and heart homogenates was low but also showed developmental increases following birth. Acetyl-CoA synthetase activity of chick embryonic hearts was greatest at 16 days of development. Palmitylcarnitine transferase activity of rat liver and heart homogenates showed a striking increase during the first week of life. Chick heart activity was similar to that observed for palmityl-CoA synthetase with a peak between 13 and 16 days of embryonic development. Coincident with the postnatal rise in fatty acid activation and palmitylcarnitine transferase activity in developing rats, the oxidation of palmityl-CoA plus carnitine and of palmitylcarnitine increased from barely measurable levels at birth to adult levels by 30 days of age. The increases that we observe probably relate to changes in the specific activity of the enzymes as well as to an increase in the absolute number of mitochondria during development.  相似文献   

    17.
    The capsular polysaccharide of Pasteurella haemolytica A2 consists of a linear polymer of N-acetylneuraminic acid (Neu5Ac) with alpha(2-8) linkages. The production of this polymer is strictly regulated by the growth temperature and above 40 degrees C no production is detected. Analysis of the enzymatic activities directly involved in its biosynthesis reveals that Neu5Ac lyase, CMP-Neu5Ac synthetase and polysialyltransferase are involved in this regulation. Very low activities were found in P. haemolytica grown at 43 degrees C (at least 25 times lower than those observed when the growth temperature was 37 degrees C). The synthesis of these enzymes increased rapidly when bacteria grown at 43 degrees C were transferred to 37 degrees C and decreased dramatically when cells grown at 37 degrees C were transferred to 43 degrees C. These findings indicate that the cellular growth temperature regulates the synthesis of these enzymes and hence the concentration of the intermediates necessary for capsular polysaccharide genesis in P. haemolytica A2.  相似文献   

    18.
    19.
    20.
    During mouse early development cell adhesion molecules are indispensable for the embryo organisation. A family of molecules probably involved in development is the transmembrane glycoprotein CD44 family, which exists in multiple isoforms. These are generated by alternative splicing of the pre-mRNA, resulting in the enlargement of the extracellular part of the molecule. The standard form of CD44 is widely expressed in adult tissues and in embryos from day 9.5 post coitum onwards, while the numerous variant isoforms exhibit highly specialised patterns of expression that are already in the egg cylinder at day 6.5 of development. In lymphohemopoiesis, specific variant isoforms also emerge at decisive differentiation stages. Although specific ligands for the variant region still await isolation, the highly organised expression of CD44 variant isoforms suggests they have a pivotal role in cellular interactions during early development, pattern formation and hemopoiesis.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号