首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans.  相似文献   

2.
3.
4.
The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation) was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively) is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon cycle in nature. Besides, the ability of assimilating carbon molecules could provide additional hints to comprehend the ecological success of Prochlorococcus.  相似文献   

5.
The regulation of glutamine synthetase (EC 6.3.1.2) from Prochlorococcus was previously shown to exhibit unusual features: it is not upregulated by nitrogen starvation and it is not inactivated by darkness (El Alaoui et al. (2001) Appl Environ Microbiol 67: 2202-2207). These are probably caused by adaptations to oligotrophic environments, as confirmed in this work by the marked decrease in the enzymatic activity when cultures were subjected to iron or phosphorus starvation. In order to further understand the adaptive features of ammonium assimilation in this cyanobacterium, glutamine synthetase was purified from two Prochlorococcus strains: PCC 9511 (high-light adapted) and SS120 (low-light adapted). We obtained approximately 100-fold purified samples of glutamine synthetase electrophoretically homogeneous, with a yield of approximately 30%. The estimated molecular mass of the subunits was roughly the same for both strains: 48.3 kDa. The apparent Km constants for the biosynthetic activity were 0.30 mM for ammonium, 1.29 mM for glutamate and 1.35 mM for ATP; the optimum pH was 8.0. Optimal temperature was surprisingly high (55 degrees C). Phylogenetic analysis of glnA from three Prochlorococcus strains (MED4, MIT9313 and SS120) showed they group closely with marine Synechococcus isolates, in good agreement with other studies based on 16 S RNA sequences. All of our results suggest that the structure and kinetics of glutamine synthetase in Prochlorococcus have not been significantly modified during the evolution within the cyanobacterial radiation, in sharp contrast with its regulatory properties.  相似文献   

6.
7.
The in situ community structure of Prochlorococcus populations in the eastern North Atlantic Ocean was examined by analysis of Prochlorococcus 16S rDNA sequences with three independent approaches: cloning and sequencing, hybridization to specific oligonucleotide probes, and denaturing gradient gel electrophoresis (DGGE). The hybridization of high-light (HL) and low-light (LL) Prochlorococcus genotype-specific probes to two depth profiles of PCR-amplified 16S rDNA sequences revealed that in these two stratified water columns, an obvious niche-partitioning of Prochlorococcus genotypes occurred. In each water column a shift from the HL to the LL genotype was observed, a transition correlating with the depth of the surface mixed layer (SML). Only the HL genotype was found in the SML in each water column, whereas the LL genotype was distributed below the SML. The range of in situ irradiance to which each genotype was subjected within these distinct niches was consistent with growth irradiance studies of cultured HL- and LL-adapted Prochlorococcus strains. DGGE analysis and the sequencing of Prochlorococcus 16S rDNA clones were in full agreement with the genotype-specific oligonucleotide probe hybridization data. These observations of a partitioning of Prochlorococcus genotypes in a stratified water column provide a genetic basis for the dim and bright Prochlorococcus populations observed in flow cytometric signatures in several oceanic provinces.  相似文献   

8.
We outline an approach to simultaneously assess multilevel microbial diversity patterns utilizing 16S-ITS rDNA clone libraries coupled with automated ribosomal intergenic spacer analysis (ARISA). Sequence data from 512 clones allowed estimation of ARISA fragment lengths associated with bacteria in a coastal marine environment. We matched 92% of ARISA peaks (each comprising >1% total amplified product) with corresponding lengths from clone libraries. These peaks with putative identification accounted for an average of 83% of total amplified community DNA. At 16S rDNA similarities <98%, most taxa displayed differences in ARISA fragment lengths >10 bp, readily detectable and suggesting ARISA resolution is near the 'species' level. Prochlorococcus abundance profiles from ARISA were strongly correlated (r2=0.86) to Prochlorococcus cell counts, indicating ARISA data are roughly proportional to actual cell abundance within a defined taxon. Analysis of ARISA profiles for 42 months elucidated patterns of microbial presence and abundance providing insights into community shifts and ecological niches for specific organisms, including a coupling of ecological patterns for taxa within the Prochlorococcus, the Gamma Proteobacteria and Actinobacteria. Clade-specific ARISA protocols were developed for the SAR11 and marine cyanobacteria to resolve ambiguous identifications and to perform focused studies. 16S-ITS data allowed high-resolution identification of organisms by ITS sequence analysis, and examination of microdiversity.  相似文献   

9.
Cell cycle regulation by light in Prochlorococcus strains   总被引:1,自引:0,他引:1  
The effect of light on the synchronization of cell cycling was investigated in several strains of the oceanic photosynthetic prokaryote Prochlorococcus using flow cytometry. When exposed to a light-dark (L-D) cycle with an irradiance of 25 micromol of quanta x m(-2) x s(-1), the low-light-adapted strain SS 120 appeared to be better synchronized than the high-light-adapted strain PCC 9511. Submitting L-D-entrained populations to shifts (advances or delays) in the timing of the "light on" signal translated to corresponding shifts in the initiation of the S phase, suggesting that this signal is a key parameter for the synchronization of population cell cycles. Cultures that were shifted from an L-D cycle to continuous irradiance showed persistent diel oscillations of flow-cytometric signals (light scatter and chlorophyll fluorescence) but with significantly reduced amplitudes and a phase shift. Complete darkness arrested most of the cells in the G1 phase of the cell cycle, indicating that light is required to trigger the initiation of DNA replication and cell division. However, some cells also arrested in the S phase, suggesting that cell cycle controls in Prochlorococcus spp. are not as strict as in marine Synechococcus spp. Shifting Prochlorococcus cells from low to high irradiance translated quasi-instantaneously into an increase of cells in both the S and G2 phases of the cell cycle and then into faster growth, whereas the inverse shift induced rapid slowing of the population growth rate. These data suggest a close coupling between irradiance levels and cell cycling in Prochlorococcus spp.  相似文献   

10.
Prokaryotic ribosomal protein genes are typically grouped within highly conserved operons. In many cases, one or more of the encoded proteins not only bind to a specific site in the ribosomal RNA, but also to a motif localized within their own mRNA, and thereby regulate expression of the operon. In this study, we computationally predicted an RNA motif present in many bacterial phyla within the 5′ untranslated region of operons encoding ribosomal proteins S6 and S18. We demonstrated that the S6:S18 complex binds to this motif, which we hereafter refer to as the S6:S18 complex-binding motif (S6S18CBM). This motif is a conserved CCG sequence presented in a bulge flanked by a stem and a hairpin structure. A similar structure containing a CCG trinucleotide forms the S6:S18 complex binding site in 16S ribosomal RNA. We have constructed a 3D structural model of a S6:S18 complex with S6S18CBM, which suggests that the CCG trinucleotide in a specific structural context may be specifically recognized by the S18 protein. This prediction was supported by site-directed mutagenesis of both RNA and protein components. These results provide a molecular basis for understanding protein-RNA recognition and suggest that the S6S18CBM is involved in an auto-regulatory mechanism.  相似文献   

11.
The core oscillator of the circadian clock in cyanobacteria consists of 3 proteins, KaiA, KaiB, and KaiC. All 3 have previously been shown to be essential for clock function. Accordingly, most cyanobacteria possess at least 1 copy of each kai gene. One exception is the marine genus Prochlorococcus, which we suggest here has suffered a stepwise deletion of the kaiA gene, together with significant genome streamlining. Nevertheless, natural Prochlorococcus populations and laboratory cultures are strongly synchronized by the alternation of day and night, displaying 24-h rhythms in DNA replication, with a temporal succession of G1, S, and G2-like cell cycle phases. Using quantitative real-time PCR, we show here that in Prochlorococcus marinus PCC 9511, the mRNA levels of the clock genes kaiB and kaiC, as well as a few other selected genes including psbA, also displayed marked diel variations when cultures were kept under a light-dark rhythm. However, both cell cycle and psbA gene expression rhythms damped very rapidly under continuous light. In the closely related Synechococcus sp. WH8102, which possesses all 3 kai genes, cell cycle rhythms persisted over several days, in agreement with established cyanobacterial models. These data indicate a correlation between the loss of kaiA and a loss of robustness in the endogenous oscillator of Prochlorococcus and raise questions about how a basic KaiBC system may function and through which mechanism the daily "lights-on" and "lights-off" signal could be mediated.  相似文献   

12.
We have shown previously that androgen receptor (AR) activity is required for the progression of cells from G(1) to S phase. In an attempt to elucidate the mechanism of androgen- and androgen-receptor-mediated proliferation of prostate cancer cells, we studied the effect of anti-androgen bicalutamide (Casodex) on the expression of cell-cycle regulatory genes in synchronized LNCaP cells progressing from G(1) to S phase. LNCaP cells were synchronized by isoleucine-deprivation. Expression of cell-cycle regulatory genes in S phase control cells versus Casodex-treated cells that fail to enter S phase was studied using a microarray containing cDNA probes for 111 cell-cycle specific genes. RT-PCR and Western-blots were used to validate microarray data. Casodex blocked synchronized LNCaP cells from entering S phase. Microarrays revealed downregulation of eight genes in cells prevented from entering into S phase by Casodex. Of these eight genes, only Cdc6, cyclin A, and cyclin B were downregulated at both the mRNA and protein level in Casodex treated cells as compared to control cells. The mRNA and protein levels of Cdc6 increased as synchronized LNCaP cells progressed from G(1) to S phase, and were attenuated in Casodex-treated cells failed to enter S phase. Cyclins A and B were detected when cells entered S phase, but not when they were in G(1) phase. Like Cdc6, the levels of both cyclins A and B were attenuated in Casodex-treated cells. AR may play an important role in the onset of DNA synthesis in prostate cancer cells by regulating the expression and stability of Cdc6, which is critically required for the assembly of the pre-replication complex(pre-RC).  相似文献   

13.
Axenic (pure) cultures of marine unicellular cyanobacteria of the Prochlorococcus genus grow efficiently only if the inoculation concentration is large; colonies form on semisolid medium at low efficiencies. In this work, we describe a novel method for growing Prochlorococcus colonies on semisolid agar that improves the level of recovery to approximately 100%. Prochlorococcus grows robustly at low cell concentrations, in liquid or on solid medium, when cocultured with marine heterotrophic bacteria. Once the Prochlorococcus cell concentration surpasses a critical threshold, the "helper" heterotrophs can be eliminated with antibiotics to produce axenic cultures. Our preliminary evidence suggests that one mechanism by which the heterotrophs help Prochlorococcus is the reduction of oxidative stress.  相似文献   

14.
The glmS ribozyme is a riboswitch class that occurs in certain Gram-positive bacteria, where it resides within mRNAs encoding glucosamine 6-phosphate synthase. Members of this self-cleaving ribozyme class rapidly catalyze RNA transesterification upon binding GlcN6P, and genetic evidence suggests that this cleavage event is important for down-regulating GlmS protein expression. In this report, we present a refined secondary structure model of the glmS ribozyme and determine the importance of a conserved pseudoknot structure for optimal ribozyme function. Analyses of deletion constructs demonstrate that the pseudoknot, together with other structural elements, permits the ribozyme to achieve maximum rate constants for RNA cleavage at physiologically relevant Mg2+ concentrations. In addition, we show that substantial rate enhancements are supported by an exchange-inert cobalt (III) complex and by molar concentrations of monovalent ions. Our findings indicate that the glmS ribozyme forms a complex structure to employ catalytic strategies that do not require the direct participation of divalent metal ions.  相似文献   

15.
16.
17.
Prochlorococcus is a ubiquitous marine oxyphotobacterium characterized by the presence of DV-chl a and b . In addition, the type strain Prochlorococcus marinus Chisholm et al. CCMP 1375 (or SS120), an isolate from the Sargasso Sea, contains low levels of an unusual phycoerythrin. Until now, it has been unclear if phycoerythrin occurs randomly within this systematic group and if the molecular characteristics of this phycoerythrin are restricted to this single strain. Here, we show that two additional Prochlorococcus strains from the Pacific Ocean also contain similar low levels of phycoerythrin. DNA sequence and phylogenetic analyses demonstrated that this phycoerythrin is very similar to the phycoerythrin of P. marinus SS120 and differs from the classic cyanobacterial phycoerythrins. In contrast, a third isolate from the Arabian Sea lacks phycoerythrin. Based on the DV-chl b:a ratio and 16S rRNA sequence data, we classify the two Pacific phycoerythrin-containing isolates as low-light-adapted strains and the Arabian Sea isolate as a high-light-adapted strain. Thus, we provide further evidence to link the physiology of an individual genotype and the presence or absence of functional phycoerythrin genes within the genus Prochlorococcus .  相似文献   

18.
An intrinsic divinyl-chlorophyll a/b antenna and a particular form of phycobiliprotein, phycoerythrin (PE) III, coexist in the marine oxyphotobacterium Prochlorococcus marinus CCMP 1375. The genomic region including the cpeB/A operon of P. marinus was analysed. It encompasses 10153 nucleotides that encode three structural phycobiliproteins and at least three (possibly five) different polypeptides analogous to cyanobacterial or red algal proteins involved either in the linkage of subunits or the synthesis and attachment of chromophoric groups. This gene cluster is part of the chromosome and is located within a distance of less than 110 kb from a previously characterized region containing the genes aspA-psbA-aroC. Whereas the Prochlorococcus phycobiliproteins are characterized by distinct deletions and amino acid replacements with regard to analogous proteins from other organisms, the gene arrangement resembles the organization of phycobiliprotein genes in some other cyanobacteria, in particular marine Synechococcus strains. The expression of two of the Prochlorococcus polypeptides as recombinant proteins in Escherichia coli allowed the production of individual homologous antisera to the Prochlorococcus and PE subunits. Experiments using these sera show that the Prochlorococcus PEs are specifically associated to the thylakoid membrane and that the protein level does not significantly vary as a function of light irradiance or growth phase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号