共查询到20条相似文献,搜索用时 0 毫秒
1.
I Toots R Misselwitz S Bhm H Welfle R Villems M Saarma 《Nucleic acids research》1982,10(11):3381-3389
Three different conformers of rat liver 5S ribosomal RNA were investigated by partial nuclease cleavage technique using S1 nuclease and cobra venom endoribonuclease (CVE) as conformational probes. Urea-treated and renatured 5S RNA co-migrate on non-denaturing gels, but exhibit distinct differences in their nuclease cleavage patterns. The most prominent differences in S1 nuclease and CVE accessibility of these conformers are located in region 30-50 and around nucleotides 70 and 90. The third form of 5S RNA with higher electrophoretic mobility was generated by EDTA treatment. The cleavage patterns of this 5S RNA conformer are similar to that characteristic for the renatured 5S RNA. The results demonstrate the difference in secondary structure and possibly different tertiary base-pairing interactions of 5S RNA conformers. 相似文献
2.
Two distinct gait types in swimming frogs 总被引:1,自引:0,他引:1
3.
Two distinct enzymes contribute to biphasic S6 phosphorylation in serum-stimulated chicken embryo fibroblasts. 总被引:2,自引:6,他引:2
下载免费PDF全文

Serum stimulation of quiescent chicken embryo fibroblasts resulted in a time-dependent, biphasic activation of S6 kinase activity. Chromatographic fractionation of serum-stimulated cell lysates resolved two distinct S6 kinase activities. Anti-Xenopus S6 kinase II antiserum immunoprecipitated a 90,000-Mr S6 kinase but did not cross-react with a smaller, 65,000-Mr S6 kinase. Phosphopeptide analysis confirmed that the 90,000- and 65,000-Mr proteins were structurally unrelated and established that the 65,000-Mr protein isolated by the current protocol was the same serum-stimulated chicken embryo fibroblast S6 kinase as that previously characterized (J. Blenis, C. J. Kuo, and R. L. Erikson, J. Biol. Chem. 262:14373-14376, 1987). These results demonstrate the contribution of two distinct S6 kinases to total serum-stimulated ribosomal protein S6 phosphorylation. 相似文献
4.
5.
Non-homologous RNA recombination is a process enabling the exchange of genetic material between various (related or unrelated) RNA-based viruses. Despite extensive investigations its molecular mechanism remains unclear. Studies on genetic recombination in brome mosaic virus (BMV) have shown that local hybridization between genomic RNAs induces frequent non-homologous crossovers. A detailed analysis of recombinant structures suggested that local complementary regions might be involved in two types of non-homologous recombination in BMV: site-specific and heteroduplex-mediated. To verify the above hypothesis and better recognize the mechanism of the phenomenon studied we have tested how the putative types of recombination are affected by a specific mutation in the BMV polymerase gene or by changes in RNA structure. The experiments undertaken revealed substantial differences between site-specific and heteroduplex-mediated recombination, indicating that they occur according to different mechanisms. The former can be classified as homology-assisted, and the latter as homology-independent. In addition to local RNA/RNA hybridization, short regions of homology are required for site-specific crossovers to occur. They are most efficiently mediated if one homologous sequence is located at the beginning of and the second just before a double-stranded region. At present it is difficult to state what is the mechanism of heteroduplex-mediated recombination. Earlier it was postulated that strong RNA/RNA interaction enforces template switching by the viral replicase. There are, however, several observations questioning this model and indicating that some other factors, which are still unknown, may influence heteroduplex-mediated crossovers. 相似文献
6.
Two immunologically distinct types of protofilaments can be identified in Natrialba magadii flagella
A rabbit antiserum to the 15-kDa acetylcholinesterase toxin neutralised the lethal effect of the 15-kDa toxin of Aeromonas hydrophila when injected into trout. However, immunisation of fish with the 15-kDa toxoid failed to induce an antibody response, and a higher molecular mass form of this toxin was purified from the extracellular products with the aim of inducing an immune response in fish. The optimal conditions for production of extracellular products by A. hydrophila strain B32 were studied to increase the concentration of this protoxin. The extracellular products were fractionated by molecular exclusion chromatography to yield a purified protoxin with an estimated molecular mass of 45 kDa by SDS-PAGE and which gave a positive reaction in Western blotting with the rabbit anti-15-kDa toxin serum. Since the 45-kDa protoxin showed lower specific acetylcholinesterase activity than the active 15-kDa toxin, the behaviour of the active site was studied using specific inhibitors. This 45-kDa protoxin was 13.3-fold less toxic than the 15-kDa toxin and induced antibody production in fish. 相似文献
7.
H Watanabe H Miyazaki M Kondoh Y Masuda S Kimura M Yanagisawa T Masaki K Murakami 《Biochemical and biophysical research communications》1989,161(3):1252-1259
Competitive displacement experiments of 125I-endothelin (ET)-1, -2, or -3 binding to chick cardiac membranes were performed with unlabeled ET-1, -2, -3, and sarafotoxin S6b (STX) as competitors. 125I-ET-1 and -2 binding was competitively inhibited by increasing concentrations of these unlabeled peptides in the same order; i.e. ET-2 greater than or equal to ET-1 greater than ET-3 greater than STX. In contrast, the order of potency in displacing 125I-ET-3 binding was ET-3 greater than ET-2 greater than or equal to ET-1 greater than STX. Affinity labeling of the membranes by cross-linking with 125I-ET-1 and -2 via disuccinimidyl tartarate yielded one major specific band with an apparent Mr = 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. On the other hand, affinity labeling with 125I-ET-3 showed that two major and one minor bands of Mr = 34,000, 46,000, and 53,000, respectively, were specifically labeled. These results indicate the presence of two distinct types of ET receptors, one of which has higher affinity for ET-1 and -2 than ET-3 and the other is conversely ET-3-preferring. 相似文献
8.
9.
10.
R.J.W. De Wit 《FEBS letters》1982,150(2):445-448
Folic acid is degraded too fast by Dictyostelium discoideum to study binding of this ligand to cell surface binding proteins. Folate deaminase activity was inhibited in the presence of 3.3 × 10−4 M 8-azaguanine. This inhibitor enabled us to detect two folate binding proteins. One type bound folic acid and deamino-folic acid with the same affinity (K0.5 = 3–6 × 10−7 M) and apparently negative cooperativity. Binding to only this type was observed if 8-azaguanine was omitted. The second type bound folic acid noncooperatively with Kd = 7 × 10−7 M. Deamino-folic acid did not compete even at a 1000-fold excess. This type may correspond to the chemotactic receptor. 相似文献
11.
The isoleucine acceptance of tRNA from Escherichia coli C6 was previously shown to be influenced by the synthetase level (Marashi, F. and Harris, C.L. 1977. Biochim. Biophys. Acta 477, 84-88). We show here that the increased acceptance observed at higher enzyme levels is accompanied by an increase in the aminoacylation of one tRNAile species. Hence, tRNAile, a minor species at low enzyme levels, is a major isoacceptor after full aminoacylation. The two major isoleucine species have been purified using a combination of BD-cellulose, DEAE-Sephadex A-50 and methylated albumin kieselguhr chromatography. tRNAile (1511 pmoles ile/A260 of tRNA) was found to be slowly acylated, with 2a Vmax one-seventh that observed with tRNAil3le (1475 pmoles ile/A260). Two-dimensional TLC analysis of RNase T2 digests revealed differences in nucleotide content between the purified tRNAs. These results are discussed in terms of the presence of slow and fast tRNAile species in E. coli. 相似文献
12.
6S RNA regulates E. coli RNA polymerase activity 总被引:13,自引:0,他引:13
The E. coli 6S RNA was discovered more than three decades ago, yet its function has remained elusive. Here, we demonstrate that 6S RNA associates with RNA polymerase in a highly specific and efficient manner. UV crosslinking experiments revealed that 6S RNA directly contacts the sigma70 and beta/beta' subunits of RNA polymerase. 6S RNA accumulates as cells reach the stationary phase of growth and mediates growth phase-specific changes in RNA polymerase. Stable association between sigma70 and core RNA polymerase in extracts is only observed in the presence of 6S RNA. We show 6S RNA represses expression from a sigma70-dependent promoter during stationary phase. Our results suggest that the interaction of 6S RNA with RNA polymerase modulates sigma70-holoenzyme activity. 相似文献
13.
Bokinsky G Nivón LG Liu S Chai G Hong M Weeks KM Zhuang X 《Journal of molecular biology》2006,361(4):771-784
Like most cellular RNA enzymes, the bI5 group I intron requires binding by a protein cofactor to fold correctly. Here, we use single-molecule approaches to monitor the structural dynamics of the bI5 RNA in real time as it assembles with its CBP2 protein cofactor. These experiments show that CBP2 binds to the target RNA in two distinct modes with apparently opposite effects: a "non-specific" mode that forms rapidly and induces large conformational fluctuations in the RNA, and a "specific" mode that forms slowly and stabilizes the native RNA structure. The bI5 RNA folds though multiple pathways toward the native state, typically traversing dynamic intermediate states induced by non-specific binding of CBP2. These results suggest that the protein cofactor-assisted RNA folding involves sequential non-specific and specific protein-RNA interactions. The non-specific interaction potentially increases the local concentration of CBP2 and the number of conformational states accessible to the RNA, which may promote the formation of specific RNA-protein interactions. 相似文献
14.
15.
16.
17.
18.
P W Trown 《Archives of biochemistry and biophysics》1973,156(2):694-702
[γ-32P]GTP-Labeled Qβ 6S RNA yielded only one major radioactive oligonucleotide after digestion with pancreatic ribonuclease. Nearest neighbor analysis of this 5′-oligonucleotide demonstrated that approximately 95% of the molecules terminate with the same sequence, pppGpGpCp. This sequence is the complement of the only major 3′-sequence found in this RNA. Both strands of 6S RNA therefore appear to have identical 3′- and 5′-terminal trinucleotide sequences. 相似文献
19.
Two distinct types of mutations conferring to Escherichia coli K12 capability of D-tryptophan utilization 总被引:1,自引:0,他引:1
We showed that the ability of Escherichia coli K12 tryptophan auxotrophs to utilize D-tryptophan as a substitute for L-tryptophan may result from two types of mutations. The first type consisted in changes in the dadR regulatory site of the dad operon increasing the synthesis of D-amino acid dehydrogenase. The mutations of the second type mapped within the dad A structural gene. They changed the apparent substrate specificity of D-amino acid dehydrogenase. We suppose that the change may be due to an altered enzyme structure which make it more accessible to D-tryptophan. 相似文献
20.
Two distinct types of trimethoprim-resistant dihydrofolate reductase specified by R-plasmids of different compatibility groups. 总被引:13,自引:0,他引:13
K H Pattishall J Acar J J Burchall F W Goldstein R J Harvey 《The Journal of biological chemistry》1977,252(7):2319-2323
R-Plasmids from a number of trimethoprim-resistant Escherichia coli and Citrobacter sp. were studied after transfer to E. coli K12 hosts. Each was found to specify a dihydrofolate reductase which was resistant to trimethoprim and Methotrexate, and which could be completely separated from the host chromosomal enzyme by gel filtration. Two distinct types of R-plasmid dihydrofolate reductases were identified. Type I enzymes, typified by the R483 enzyme previously described (Sk?ld, O., and Widh, A. (1974) J. Biol. Chem. 249, 4324-4325), are synthesized in amounts severalfold higher than the chromosomal enzyme. The 50% inhibitory concentrations (I50) of trimethoprim, Methotrexate, and aminopterin are increased several thousandfold over the corresponding values for the chromosomal enzyme. Type II R-plasmid dihydrofolate reductases are synthesized in about the same amount, or less, as the chromosomal enzyme, but are practically several hundredfold higher than those for the type I enzymes. Both types of R-plasmid dihydrofolate reductase showed little difference from the chromosomal enzyme in the binding of dihydrofolate, NADPH, folic acid, and 2,4-diaminopyrimidine. 相似文献