共查询到20条相似文献,搜索用时 0 毫秒
1.
Schenk G Boutchard CL Carrington LE Noble CJ Moubaraki B Murray KS de Jersey J Hanson GR Hamilton S 《The Journal of biological chemistry》2001,276(22):19084-19088
A purple acid phosphatase from sweet potato is the first reported example of a protein containing an enzymatically active binuclear Fe-Mn center. Multifield saturation magnetization data over a temperature range of 2 to 200 K indicates that this center is strongly antiferromagnetically coupled. Metal ion analysis shows an excess of iron over manganese. Low temperature EPR spectra reveal only resonances characteristic of high spin Fe(III) centers (Fe(III)-apo and Fe(III)-Zn(II)) and adventitious Cu(II) centers. There were no resonances from either Mn(II) or binuclear Fe-Mn centers. Together with a comparison of spectral properties and sequence homologies between known purple acid phosphatases, the enzymatic and spectroscopic data strongly indicate the presence of catalytic Fe(III)-Mn(II) centers in the active site of the sweet potato enzyme. Because of the strong antiferromagnetism it is likely that the metal ions in the sweet potato enzyme are linked via a mu-oxo bridge, in contrast to other known purple acid phosphatases in which a mu-hydroxo bridge is present. Differences in metal ion composition and bridging may affect substrate specificities leading to the biological function of different purple acid phosphatases. 相似文献
2.
An improved purification of the purple acid phosphatase from sweet potatoes has been developed, and the properties of the enzyme have been reexamined. Contrary to previous reports, (e.g., Y. Sugiura, et al., J. Biol. Chem., 256, 10664-10670 (1981) ), the enzyme contains two moles of iron and insignificant amounts of manganese. The specific activity of the iron-containing preparations is ca. 14 times higher than that reported previously for the purported "Mn(III)" enzyme. The sweet potato purple acid phosphatase does indeed bind manganese, but it can be removed by dialysis with no changes in specific activity or spectral properties. 相似文献
3.
Purple acid phosphatase (PAP) was purified from sweet potato dry powder, which is used as a food additive. Spectrometric and enzymatic analyses, and analysis of the amino-terminal sequence indicated that the purified purple acid phosphatase was PAP1. High activity in neutral and acidic conditions, broad substrate specificity, and good thermal stability of PAP1 suggest the possibility of practical applications of PAP1. 相似文献
4.
5.
An enzyme with a double identity: purple acid phosphatase and tartrate-resistant acid phosphatase 总被引:4,自引:0,他引:4
The tartrate-resistant acid phosphatases or purple acid phosphatases constitute a class of related mammalian enzymes. Spectroscopic and magnetic studies have revealed that the purple phosphatases contain a novel dinuclear iron active site that is responsible for the purple color. More biologically and biomedically oriented research has shown that the tartrate-resistant acid phosphatases generally occur in osteoclasts and white blood cells, where they appear to be localized in lysosomes or similar organelles. Despite the different names given the enzymes by researchers in the two fields, recent sequence determinations and immunological studies indicate that the enzymes are identical. The status of research in both fields is reviewed in an attempt to present a unified picture of the structure, function, and mode of action of these unique metalloproteins. 相似文献
6.
A Durmus C Eicken B H Sift A Kratel R Kappl J Hüttermann B Krebs 《European journal of biochemistry》1999,260(3):709-716
Purple acid phosphatase from sweet potatoes Ipomoea batatas (spPAP) has been purified to homogeneity and characterized using spectroscopic investigations. Matrix-assisted laser desorption/ionization mass spectrometry analysis revealed a molecular mass of approximately 112 kDa. The metal content was determined by X-ray fluorescence using synchrotron radiation. In contrast to previous studies it is shown that spPAP contains a Fe(III)-Zn(II) center in the active site as previously determined for the purple acid phosphatase from red kidney bean (kbPAP). Moreover, an alignment of the amino acid sequences suggests that the residues involved in metal-binding are identical in both plant PAPs. Tyrosine functions as one of the ligands for the chromophoric Fe(III). Low temperature EPR spectra of spPAP show a signal near g = 4.3, characteristic for high-spin Fe(III) in a rhombic environment. The Tyr-Fe(III) charge transfer transition and the EPR signal are both very sensitive to changes in pH. The pH dependency strongly suggests the presence of an ionizable group with a pKa of 4.7, arising from an aquo ligand coordinated to Fe(III). EPR and UV/visible studies of spPAP in the presence of the inhibitors phosphate or arsenate suggest that both anions bind to Fe(III) in the binuclear center replacing the coordinated water or hydroxide ligand necessary for hydrolysis. The conserved histidine residues of spPAP corresponding to His202 and His296 in kbPAP probably interact in catalysis. 相似文献
7.
Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. 总被引:1,自引:0,他引:1
G Schenk Y Ge L E Carrington C J Wynne I R Searle B J Carroll S Hamilton J de Jersey 《Archives of biochemistry and biophysics》1999,370(2):183-189
Purple acid phosphatases comprise a family of binuclear metal-containing acid hydrolases, representatives of which have been found in animals, plants, and fungi. The goal of this study was to characterize purple acid phosphatases from sweet potato tubers and soybean seeds and to establish their relationship with the only well-characterized plant purple acid phosphatase, the FeIII-ZnII-containing red kidney bean enzyme. Metal analysis indicated the presence in the purified sweet potato enzyme of 1.0 g-atom of iron, 0.6-0.7 g-atom of manganese, and small amounts of zinc and copper. The soybean enzyme contained 0.8-0.9 g-atom of iron, 0.7-0.8 g-atom of zinc per subunit, and small amounts of manganese, copper, and magnesium. Both enzymes exhibited visible absorption maxima at 550-560 nm, with molar absorption coefficients of 3200 and 3300 M(-1) cm(-1), respectively, very similar to the red kidney bean enzyme. Substrate specificities were markedly different from those of the red kidney bean enzyme. A cloning strategy was developed based on N-terminal sequences of the sweet potato and soybean enzymes and short sequences around the conserved metal ligands of the mammalian and red kidney bean enzymes. Three sequences were obtained, one from soybean and two from sweet potato. All three showed extensive sequence identity (>66%) with red kidney bean purple acid phosphatase, and all of the metal ligands were conserved. The combined results establish that these enzymes are binuclear metalloenzymes: Fe-Mn in the sweet potato enzyme and Fe-Zn in soybean. The sweet potato enzyme is the first well-defined example of an Fe-Mn binuclear center in a protein. 相似文献
8.
The Tetrahymena intervening sequence ribonucleic acid enzyme is a phosphotransferase and an acid phosphatase 总被引:5,自引:0,他引:5
A shortened form of the Tetrahymena intervening sequence (IVS) RNA acts as an enzyme, catalyzing nucleotidyl transfer and hydrolysis reactions with oligo(cytidylic acid) substrates [Zaug, A. J., & Cech, T. R. (1986) Science (Washington, D.C.) 231, 470-475]. These reactions involve phosphodiester substrates. We now show that the same enzyme has activity toward phosphate monoesters. The 3'-phosphate of C5p or C6p is transferred to the 3'-terminal guanosine of the enzyme. The pH dependence of the reaction (optimum at pH 5) indicates that the enzyme has activity toward the dianion and much greater activity toward the monoanion form of the 3'-phosphate of the substrate. Phosphorylation of the enzyme is reversible by C5-OH and other oligo(pyrimidines) such as UCU-OH. Thus, the RNA enzyme acts as a phosphotransferase, transferring the 3'-terminal phosphate of C5p to UCU-OH with multiple turnover. At pH 4 and 5, the phosphoenzyme undergoes slow hydrolysis to yield inorganic phosphate. Thus, the enzyme has acid phosphatase activity. The RNA enzyme dephosphorylates oligonucleotide substrates with high sequence specificity, which distinguishes it from known protein enzymes. 相似文献
9.
An acid phosphatase species which is activated by Fe2+ was purified 3,700-fold from rat spleen by chromatography on columns containing Blue-Sepharose, concanavalin A-Sepharose, Sephadex G-100, and CM-Sephadex. The enzyme hydrolyzed aryl phosphates, nucleoside di- and triphosphates, phosphoproteins, and thiamine pyrophosphate with Km values of 10(-4) to 10(-3) M at an optimal pH of 5.0-5.8. Co-purification of the acid phosphatase and acid phosphoprotein phosphatase indicated that they were identical. The purified enzyme was glycoprotein in nature, showing four heterogeneous forms on acid polyacrylamide gel electrophoresis (pI values, 7.8, 8.0, 8.3, and 8.5), but it gave a molecular weight of 33,000 on sodium dodecyl sulfate-gel electrophoresis and gel permeation chromatography. The enzyme had a purple color (lambda max 545 nm) and contained 2 iron atoms per enzyme molecule. Among reductants, ascorbic acid and Fe2+ were the best activators, although their combined effect was not additive. Fe2+ and ascorbic acid both changed the purple enzyme into the same active form (lambda max 515 nm), giving almost the same kinetic constants for substrates and for inhibitors such as molybdate, phosphate and fluoride. However, low concentrations of Fe2+, from 0.01 mM to 1.0 mM, immediately and reversibly activated the enzyme, whereas high concentrations of ascorbic acid over 1 mM were required for maximal activation, which was slow and irreversible. 相似文献
10.
The sequence of cDNA fragments of two isozymes of the purple acid phosphatase from sweet potato (spPAP1 and spPAP2) has been determined by 5' and 3' rapid amplification of cDNA ends protocols using oligonucleotide primers based on amino acid information. The encoded amino acid sequences of these two isozymes show an equidistance of 72-77% not only to each other, but also to the primary structure of the purple acid phosphatase from red kidney bean (kbPAP). A three-dimensional model of the active site has been constructed for spPAP2 on the basis of the kbPAP crystallographic structure that helps to explain the reported differences in the visible and EPR spectra of spPAP2 and kbPAP. 相似文献
11.
Chemical modification studies of manganese(III)-containing acid phosphatase [EC 3.1.3.2] were carried out to investigate the contributions of specific amino-acid side-chains to the catalytic activity. Incubation of the enzyme with N-ethylmaleimide at pH 7.0 caused a significant loss of the enzyme activity. The inactivation followed pseudo-first-order kinetics. Double log plots of pseudo-first-order rate constant vs. concentration gave a straight line with a slope of 1.02, suggesting that the reaction of one molecule of reagent per active site is associated with activity loss. The enzyme was protected from inactivation by the presence of molybdate or phosphate ions. Amino acid analyses of the N-ethylmaleimide-modified enzyme showed that the 96%-inactivated enzyme had lost about one histidine and one-half lysine residue per enzyme subunit without any significant decrease in other amino acids, and also demonstrated that loss of catalytic activity occurred in parallel with the loss of histidine residue rather than that of lysine residue. Molybdate ions also protected the enzyme against modification of the histidine residue. The enzyme was inactivated by photooxidation mediated by methylene blue according to pseudo-first-order kinetics. The pH profile of the inactivation rates of the enzyme showed that an amino acid residue having a pKa value of approximately 7.2 was involved in the inactivation. These studies indicate that at least one histidine residue per enzyme subunit participates in the catalytic function of Mn(III)-acid phosphatase. 相似文献
12.
When grown with inadequate quantities of inorganic phosphate (Pi), plants synthesize and secret acid phosphatases into the rhizosphere. These secreted acid phosphatases are thought to release the Pi group from organophosphates present in the surrounding environment and to thereby increase Pi availability to plants. So far, however, the genetic evidence to support this hypothesis is still lacking. Previously, we showed that overexpression of Arabidopsis purple acid phosphatase 10 (AtPAP10) improved the growth of plants on Pi-deficient medium (P- medium) supplemented with the organophosphate compound ADP; in contrast, the growth of atpap10 mutant lines was reduced on the same medium. In the current research, we determined the growth performance of these lines on P- medium supplemented with four other organophosphates. The results showed that AtPAP10 could utilize rhizosphere organophosphates other than ADP for plant growth but with different utilization efficiencies. This work provides further genetic evidence that AtPAP10 phosphatase is a component of plant adaptive mechanism to Pi limitation. 相似文献
13.
Potato acid phosphatase (EC 3.1.3.2) was used to remove the eight phosphate groups from alphas1-casein. Unlike most acid phosphatases, which are active at pH 6.0 or below, potato acid phosphatase can catalyze the dephosphorylation of alphas1-casein at pH 7.0. Although phosphate inhibition is considerable (K1=0.42 mM phosphate), the phosphate ions produced by the dephosphorylation of casein can be removed by dialysis, allowing the reaction to go to completion. The dephosphorylated alphas1-casein is homogeneous on gel electrophoresis with a slower mobility than native alphas1-casein and has an amino acid composition which is identical to native alphas1-casein. Thus the removal of phosphate groups from casein does not alter its primary structure. Potato acid phosphatase also removed the phosphate groups from other phosphoproteins, such as beta-casein, riboflavin binding protein, pepsinogen, ovalbumin, and phosvitin. 相似文献
14.
A major phosphotyrosyl-protein phosphatase from bovine heart is associated with a low-molecular-weight acid phosphatase 总被引:10,自引:0,他引:10
The phosphotyrosyl [Tyr(P)]-immunoglobulin G (IgG) phosphatase activity in the extracts of bovine heart, bovine brain, human kidney, and rabbit liver can be separated by DEAE-cellulose at neutral pH into two fractions. The unbound fraction exhibits a higher activity at acidic than neutral pH while the reverse is true for the bound fraction. Of all tissues examined, the Tyr(P)-IgG phosphatase activity in the unbound fraction measured at pH 5.0 is higher than that in the bound fraction measured at pH 7.2. The acid Tyr(P)-IgG phosphatase activity has been extensively purified from bovine heart. It copurified with an acid phosphatase activity (p-nitrophenyl phosphate (PNPP) as a substrate) throughout the purification procedure. These two activities coelute from various ion-exchange and gel filtration chromatographies and comigrate on polyacrylamide gel electrophoresis, indicating that they reside on the same protein molecule. The phosphatase has a Mr = 15,000 by gel filtration and exhibits an optimum between pH 5.0 and 6.0 when either Tyr(P)-IgG-casein or PNPP is the substrate. It is highly specific for Tyr(P)-protein with little activities toward phosphoseryl [Ser(P)]- or phosphothreonyl [Thr(P)]-protein. The enzyme activities toward Tyr(P)-casein and PNPP are strongly inhibited by microM molybdate and vanadate but insensitive to inhibition by L(+)-tartrate, NaF, or Zn2+. The molecular and catalytic properties of the acid Tyr(P)-protein phosphatase purified from bovine heart are very similar to those of the low-molecular-weight acid phosphatases of Mr = 14,000 previously identified and purified from the cytosolic fraction of human liver, placenta, and other animal tissues. 相似文献
15.
Y Lindqvist E Johansson H Kaija P Vihko G Schneider 《Journal of molecular biology》1999,291(1):135-147
The crystal structure of purple acid phosphatase from rat bone has been determined by molecular replacement and the structure has been refined to 2.2 A resolution to an R -factor of 21.3 % (R -free 26.5 %). The core of the enzyme consists of two seven-stranded mixed beta-sheets, with each sheet flanked by solvent-exposed alpha-helices on one side. The two sheets pack towards each other forming a beta-sandwich. The di-iron center, located at the bottom of the active-site pocket at one edge of the beta-sandwich, contains a mu-hydroxo or mu-oxo bridge and both metal ions are observed in an almost perfect octahedral coordination geometry. The electron density map indicates that a mu-(hydr)oxo bridge is found in the metal center and that at least one solvent molecule is located in the first coordination sphere of one of the metal ions. The crystallographic study of rat purple acid phosphatase reveals that the mammalian enzymes are very similar in overall structure to the plant enzymes in spite of only 18 % overall sequence identity. In particular, coordination and geometry of the iron cluster is preserved in both enzymes and comparison of the active-sites suggests a common mechanism for the mammalian and plant enzymes. However, significant differences are found in the architecture of the substrate binding pocket. 相似文献
16.
17.
Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase 总被引:2,自引:0,他引:2
Phytases are enzymes that catalyze liberation of inorganic phosphates from phytate, the major organic phosphorus in soil. Tobacco (Nicotiana tabacum) responds to phosphorus starvation with an increase in extracellular phytase activity. By a three-step purification scheme, a phosphatase with phytase activity was purified 486-fold from tobacco root exudates to a specific activity of 6,028 nkat mg(-1) and an overall yield of 3%. SDS-PAGE revealed a single polypeptide of 64 kDa, thus indicating apparent homogeneity of the final enzyme preparation. Gel filtration chromatography suggested that the enzyme was a ca. 56 kDa monomeric protein. De novo sequencing by tandem mass spectrometry resulted in a tryptic peptide sequence that shares high homology with several plant purple acid phosphatases. The identity of the enzyme was further confirmed by molybdate-inhibition assay and cDNA cloning. The purified enzyme exhibited pH and temperature optima at 5.0-5.5 and 45 degrees C, respectively, and were found to have high affinities for both p-nitrophenyl phosphate (pNPP; K(m)=13.9 microM) and phytate (K(m)=14.7 microM), but a higher kcat for pNPP (2,056 s(-1)) than phytate (908 s(-1)). Although a broad specificity of the enzyme was observed for a range of physiological substrates in soil, maximum activity was achieved using mononucleotides as substrates. We conclude that the phytase activity in tobacco root exudates is exhibited by a purple acid phosphatase and its catalytic properties are pertinent to its role in mobilizing organic P in soil. 相似文献
18.
Evidence for a phosphoryl-enzyme intermediate in phosphate ester hydrolysis by purple acid phosphatase from bovine spleen 总被引:2,自引:0,他引:2
The possibility of the existence of a covalent enzyme-phosphoryl intermediate, E-PO3, during catalysis of phosphate ester hydrolysis by the purple acid phosphatase (PAP) from bovine spleen has been examined. Transphosphorylation experiments show that up to 22% of the phosphoryl group from p-nitrophenyl phosphate (PNPP) can be transferred to primary alcohols. Burst experiments at high pH (9.1 or 8.1 for reduced or oxidized PAP, respectively), where hydrolysis of a phosphoenzyme intermediate is expected to be rate-limiting, show clear evidence for stoichiometric bursts of p-nitrophenolate from PNPP. The formation of base-stable, acid-sensitive adducts between PAP and the 32PO3 group of [gamma-32P]ATP has been demonstrated. The pH dependence of the kinetics parameters for reduced PAP has been determined over the range pH 3-8; a feature with a pKa of approximately 6.75 that is attributable to the enzyme-substrate complex is observed. Taken together, the present results are consistent with a two-stem pseudo Uni Bi mechanism that utilizes a covalent enzyme-phosphoryl intermediate, possibly a phosphohistidine. 相似文献
19.
《Inorganica chimica acta》1988,153(1):39-44
Apoenzyme, containing ⩽0.1 zinc atoms and ⩽0.2 Fe atoms per subunit and with ⩽3% of the phosphatase activity, has been prepared from native red kidney bean purple phosphatase. Treatment of this apoenzyme with Fe3+ or Zn2+ separately gave very little recovery of activity, whereas treatment with both Fe3+ and Zn2+ resulted in complete restoration of activity, indicating that both metal ions are essential. ZnFe enzyme with close to one iron and one zinc atom per subunit has been reconstituted by this procedure. Essentially full reactivation was also achieved by addition of Fe3+ together with Fe2+ or Co2+ to the apoenzyme; Fe3+ and Cd2+ gave 27% restoration of activity, whereas Fe3+ with Mn2+, Cu2+, Ni2+ or Hg2+ gave little or no increase in activity. Kinetic parameters for the hydrolysis of p-nitrophenyl phosphate and ATP by the FeFe derivative are reported. 相似文献
20.
Escherichia coli cysteinyl-tRNA synthetase (CysRS) achieves high amino acid specificity without the need for an editing reaction. Crystallographic and spectroscopic studies have previously demonstrated that a major determinant of the specificity is an active site zinc ion that recognizes the substrate cysteine through a strong zinc-thiolate interaction. The active site cleft of CysRS is composed of highly or strictly conserved amino acids, including four inner-sphere zinc ligands, five histidine imidazoles at the base of the cleft, and a tryptophan that flips down upon cysteine binding to complete formation of the binding pocket. Here we establish the significance of each of these major features of the active site cleft by mutational analysis. Substitutions generally lead to substantially deleterious effects on K(m) and k(cat) parameters with respect to each of the cysteine, ATP, and tRNA(Cys) substrates. These findings emphasize the importance of the highly differentiated nature of the active site and provide new insights into the origins of selectivity without editing. Most mutants are less attenuated in tRNA aminoacylation than in adenylate synthesis, suggesting that tRNA binding drives a conformational change to help assemble the active site. 相似文献