共查询到20条相似文献,搜索用时 62 毫秒
1.
Calmodulin of Saccharomyces cerevisiae has different Ca2+ binding properties from other calmodulins. We previously reported that the maximum number of Ca2+ binding was 3 mol/mol and the fourth binding site was defective, which was different from 4 mol/mol for others. Their macroscopic dissociation constants suggested the cooperative three Ca2+ bindings rather than a pair of cooperative two Ca2+ bindings of ordinary calmodulin. Here we present evidence for yeast calmodulin showing the intramolecular close interaction between the N-terminal half domain and the C-terminal half domain, while the two domains of ordinary calmodulin are independent of each other. We will discuss the relationship of the shape and the shape change caused by the Ca2+ binding to the enzyme activation in yeast. The functional feature of calmodulin in yeast will also be considered, which might be different from the one of vertebrate calmodulin. 相似文献
2.
When a buffered, aerobic suspension of ethanol-grown cells of Saccharomyces cerevisiae is treated with ethanol, a rapid flux of metabolism is observed from endogenous phosphoenolpyruvate to hexose monophosphates. Intracellular concentrations of phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate record a monotonic drop, while those of triose phosphates and fructose 1,6-diphosphate fall after an early rise; fructose 6-phosphate, mannose 6-phosphate, and glucose 6-phosphate levels rise to a plateau. Prior growth on glucose extinguishes fructose 1,6-diphosphatase activity and completely arrests the rise of the hexose monophosphates. By using mutants blocked at a number of glycolytic steps it has been concluded that the metabolic flow takes place along the Embden-Meyerhof pathway in the reverse direction bypassing pyruvate kinase and fructose 6-phosphate kinase. Ethanol acts as a trigger by supplying NADH at the glyceraldehyde 3-phosphate dehydrogenase step. The rate of the reversal in the span phosphoenolpyruvate to fructose 1,6-diphosphate approaches 40 μ mol of 3-carbon units per minute per gram of wet cells. The in vivo activity of fructose 1,6-diphosphatase is nearly a quarter of this rate. 相似文献
3.
Basic algorithms of calculating the dimensions of strange attractors from experimental data are considered. A special emphasis is placed on difficulties arising when the methods of solution of the reverse nonlinear dynamic problem are used in the analysis of the behavior of biological systems. These difficulties are associated with a poor convergence and weak stability of estimated values as well as a low degree of statistical confidence. Factors that hamper the estimation of strange attractor dimensions with reasonable accuracy are discussed by the example of analysis of human electrocardiograms. A method for the statistcal estimation of dimensions of attractors is proposed based on multidimensional imitational modeling. 相似文献
4.
5.
Cloning of yeast glycolysis genes by complementation 总被引:19,自引:0,他引:19
In hepatocytes isolated from fed rats, low concentrations of oxalate (50 to 100 μM) greatly enhance ketogenesis and decrease fatty acid synthesis. These metabolic changes are due to pyruvate carboxylase inhibition. Dichloroacetate, which can be catabolized into oxalate enhances ketogenesis only when cells are enriched with lactate and pyruvate and has no obvious effect on lipogenesis. The enhancement of ketogenesis, in both cases, is due to an imbalance between pyruvate dehydrogenase and pyruvate carboxylase but with oxalate, the primary event is oxaloacetate shortage and with dichloroacetate, mitochondrial acetyl CoA excess. This work demonstrates that the studied effects of dichloroacetate are not mediated by oxalate and that low concentrations of oxalate alter the lipid metabolism of hepatocytes. 相似文献
6.
7.
The understanding of the effective functionality that governs the enzymatic self-organized processes in cellular conditions is a crucial topic in the post-genomic era. In recent studies, Transfer Entropy has been proposed as a rigorous, robust and self-consistent method for the causal quantification of the functional information flow among nonlinear processes. Here, in order to quantify the functional connectivity for the glycolytic enzymes in dissipative conditions we have analyzed different catalytic patterns using the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model formed by three delay differential equations where the enzymatic rate equations of the irreversible stages have been explicitly considered. These enzymatic activity functions were previously modeled and tested experimentally by other different groups. The results show the emergence of a new kind of dynamical functional structure, characterized by changing connectivity flows and a metabolic invariant that constrains the activity of the irreversible enzymes. In addition to the classical topological structure characterized by the specific location of enzymes, substrates, products and feedback-regulatory metabolites, an effective functional structure emerges in the modeled glycolytic system, which is dynamical and characterized by notable variations of the functional interactions. The dynamical structure also exhibits a metabolic invariant which constrains the functional attributes of the enzymes. Finally, in accordance with the classical biochemical studies, our numerical analysis reveals in a quantitative manner that the enzyme phosphofructokinase is the key-core of the metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast glycolysis. 相似文献
8.
The chaotic behavior of systems with strange attractors can be discussed by examining the flip-flop process associated to the system dynamics. This was already shown by Lorenz (1963) in his first seminal paper. A somewhat surprising result was obtained by Aizawa (1982), who, studying the same Lorenz attractor at the parameter valuer=28, reached the conclusion that the associated flip-flop was a typical Markov process. Since the process is generated in a deterministic way, one may wonder if the Aizawa result is accidental, depending on the particular parameter value, or if a similar conclusion can be extended to other systems, with different attractors. Our conclusions are that the Aizawa result is mostly accidental, because for other parameter values and for other attractors there are sharp deviations from the Markovian process. 相似文献
9.
In anaerobically grown yeast cells which lack functional mitochondria, the presence of diethylstilbestrol (DES) depressed glycolysis. The addition of the inhibitor markedly increased the cellular concentration of glycolytic intermediates which are formed prior to the pyruvate kinase step as well as to bring about an increase in the [ATP]/[ADP] ratio. Under these conditions an 18 fold decrease in the mass action ratio for pyruvate kinase [( pyruvate] [ATP]/[phosphoenolpyruvate] [ADP]) was noted, however, there was little if any effect on the other glycolytic enzymes. These results suggest that the depression of anaerobic glycolysis caused by DES results from a blockage at the level of the regulatory enzyme pyruvate kinase through a modification of its intracellular environment. 相似文献
10.
Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. 总被引:10,自引:3,他引:10 下载免费PDF全文
Six different pyruvate decarboxylase mutants of Saccharomyces cerevisiae were isolated. They belong to two unlinked complementation groups. Evidence is presented that one group is affected in a structural gene. The fact that five of the six mutants had residual pyruvate decarboxylase activity provided the opportunity for an intensive physiological characterization. It was shown that the loss of enzyme activity in vitro is reflected in a lower fermentation rate, an increased pyruvate secretion, and slower growth on a 2% glucose medium. The different effects of antimycin A on leaky mutants grown on ethanol versus the same mutants grown on glucose support the view that glucose induces some of the glycolytic enzymes, especially pyruvate decarboxylase. 相似文献
11.
Adenosine phosphates and the control of glycolysis and gluconeogenesis in yeast 总被引:5,自引:0,他引:5 下载免费PDF全文
1. Changes in dry weight, protein, RNA and DNA were measured in yeast during adaptation to glycolytic metabolism. 2. Only RNA increased significantly during the lag phase, but during the exponential phase all these cellular components increased in parallel. 3. The concentrations of ATP, ADP, AMP and glucose 6-phosphate were measured in respiring yeast and during the transition to glycolytic metabolism. 4. In respiring cells the concentration of AMP was at its highest and that of ATP was at its lowest; this relationship was reversed in glycolysing cells. 5. ADP concentration was similar in respiring and glycolysing cells, but glucose 6-phosphate concentration was much higher in the glycolysing cells. 6. A possible reason for mitochondrial repression is suggested. 7. It is concluded that adenosine phosphates do not control the direction of glycolytic flux in yeast and an alternative control of glycolysis and gluconeogenesis by enzyme activation and inactivation is suggested. 相似文献
12.
A T Winfru 《Archives of biochemistry and biophysics》1972,149(2):388-401
13.
14.
Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. 总被引:3,自引:0,他引:3
The influence of 6-phosphofructo-1-kinase on glycolytic flux in the yeast Saccharomyces cerevisiae was assessed by measuring the effects of enzyme overexpression on glucose consumption, ethanol production, and glycolytic intermediate levels under aerobic and anaerobic conditions. Enzyme overexpression had no effect on glycolytic flux under anaerobic conditions, but under aerobic conditions, it increased glycolytic flux up to the anaerobic level. The Pasteur effect was thus abolished in these cells. The increased glycolytic flux was accompanied by a compensatory decrease in flux in oxidative phosphorylation. The concentrations of the enzyme substrates showed only small or insignificant changes. These data imply that the enzyme has a low flux control coefficient for glycolysis. However, in cells overexpressing the enzyme, there was a compensatory decrease in 6-phosphofructo-2-kinase activity which was accompanied by a corresponding decrease in fructose 2,6-bisphosphate concentration. Measurements in vitro showed that the decrease in the concentration of this positive allosteric effector of 6-phosphofructo-1-kinase could significantly lower its specific activity in the cell and that this could compensate for the increased enzyme concentration in the overproducer. 相似文献
15.
AMP deaminase as a control system of glycolysis in yeast. Mechanism of the inhibition of glycolysis by fatty acid and citrate 总被引:1,自引:0,他引:1
The role of fatty acid and citrate on the interaction of the AMP deaminase (EC 3.5.4.6) reaction with glycolysis was investigated using permeabilized yeast cells. (a) Linolenate and citrate inhibited glycolytic flux and the recovery of the adenylate energy charge; however, linolenate remarkably retarded the depletion of the total adenylate pool, which was not at all affected by the addition of citrate. (b) Linolenate inhibited AMP deaminase activity in situ, resulting in the subsequent decrease in ammonium production, which reduced the activity of 6-phosphofructokinase (EC 2.7.1.11), whereas linolenate itself had no ability to inhibit the phosphofructokinase activity in the presence of excess ammonium concentration. (c) Citrate inhibited the activity of phosphofructokinase in situ in the presence and absence of ammonium ion, followed by an inhibition of glycolysis; however, AMP deaminase activity was not inhibited by citrate. The inhibition of glycolysis by fatty acids can be accounted for by the lowered activity of phosphofructokinase as a result of the decreased level of ammonium ion through the inhibition of the AMP deaminase reaction by these ligands, whereas the effect of citrate on glycolysis is a direct inhibition of phosphofructokinase without affecting the activity of AMP deaminase. Fatty acid and citrate, a principal metabolic product of fatty acid oxidation, can be responsible for the control of glycolysis in two different manners. 相似文献
16.
A Ramaiah 《Biochimica et biophysica acta》1970,206(2):270-280
17.
18.
In yeasts, the glycolysis may display oscillations of its metabolites while it is converting glucose. The dynamics of the oscillations has been investigated in cytoplasmic extracts of yeast under relaxation type conditions by determining the time course of some of the glycolytic metabolites. The compounds of the nucleotide pool have been identified as fast variables and the glucose derivatives as slow variables of the relaxation type. The period of oscillation has been subdivided into four phases which represent prominent parts of the limit cycle in the phase plane of a slow versus a fast variable. From the reaction processes in these phases, a dynamical picture of the mechanisms of oscillations is suggested. Accordingly, the oscillation results from an alternating activity of the fructose bisphosphate and the polysaccharide synthesis, both of which are coupled to glycolysis via the nucleotide pool. The processes in the phases are analyzed by calculating the rates of the reaction steps in the biochemical pathway. 相似文献
19.
Akira Kimura Yoshinori Tatsutomi Ryu'ichi Matsuno Atsuo Tanaka Hirosuke Fukuda 《Applied microbiology and biotechnology》1981,11(2):78-80
Summary Immobilized dried yeast cells, which contain glycolytic and some other emzymes, required NAD but not ATP for the (e.g. choline
kinase, pyrophosphorylase) fermentative production of CDP-choline, when washed and reused. The immobilized system was more
resistant to heat than dried cells, which had previously been used for the same purpose. However, when too many cells were
immobilized, leakage of the enzymes from the resin lattice was observed during repeated use. To prevent this leakage, the
ratio of cells to resin should be considered.
Present name: Yoshinori Wakai 相似文献
20.
Properties of Escherichia coli mutants deficient in enzymes of glycolysis. 总被引:3,自引:1,他引:3 下载免费PDF全文
Physiological properties of mutants of Escherichia coli defective in glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, or enolase are described. Introduction of a lesion in any one of the reversible steps catalyzed by these enzymes impaired both the glycolytic and gluconeogenic capabilities of the cell and generated an obligatory requirement for a source of carbon above the block (gluconeogenic) and one below (oxidative). A mixture of glycerol and succinate supported the growth of these mutants. Mutants lacking glyceraldehyde 3-phosphate dehydrogenase and glycerate 3-phosphate kinase could grow also on glycerol and glyceric acid, and enolase mutants could grow on glycerate and succinate, whereas double mutants lacking the kinase and enolase required l-serine in addition to glycerol and succinate. Titration of cell yield with limiting amounts of glycerol with Casamino Acids in excess, or vice versa, showed the gluconeogenic requirement of a growing culture of E. coli to be one-twentieth of its total catabolic and anabolic needs. Sugars and their derivatives inhibited growth of these mutants on otherwise permissive media. The mutants accumulated glycolytic intermediates above the blocked enzyme on addition of glucose or glycerol to resting cultures. Glucose inhibited growth and induced lysis. These effects could be substantially overcome by increasing the osmotic strength of the growth medium and, in addition, including 5 mM cyclic adenosine 3',5'-monophosphate therein. This substance countered to a large extent the severe repression of beta-galactosidase synthesis that glucose caused in these mutants. 相似文献