首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
W Kaszubska  H K Webb  R I Gumport 《Gene》1992,118(1):5-11
The gene (rsrIM) encoding the RsrI DNA methyltransferase (M.RsrI) from Rhodobacter sphaeroides was cloned and expressed in Escherichia coli. Under the control of a bacteriophage T7 promoter, 2% of the total protein in a crude extract was M.RsrI. This level of expression represents an approximately 50-fold increase over that present in the natural host. Chromatography using DNA cellulose and the S-adenosylmethionine analogue, sinefungin, was useful in purifying the enzyme to homogeneity. The purification yielded 100 times more enzyme than was obtained from the same quantity of R. sphaeroides cell paste. M.RsrI deposits one methyl group per productive DNA-binding event, as does its functional but sequence-nonhomologous analogue, M.EcoRI. Unlike M.EcoRI, the R. sphaeroides enzyme is a dimer at micromolar concentrations.  相似文献   

2.
We have purified the type I restriction enzymes SB and SP from Salmonella typhimurium and S. potsdam, respectively, and determined the DNA sequences that they recognize. These sequences resemble those previously determined for the type I enzymes, EcoB, EcoK and EcoA, in that the specific part of the sequence is divided into two domains by a spacer of non-specific sequence that has a fixed length for each enzyme. Two main differences from the previously determined sequences are seen. Both of the new sequences are degenerate and one of them, SB, has one trinucleotide and one pentanucleotide-specific domain rather than the trinucleotide and tetranucleotide domains seen for all of the other enzymes. The only conserved features of the recognition sequences are the adenosyl residues that are methylated in the modification reaction. For all of the enzymes these are situated ten or 11 base-pairs apart, one on each strand of the DNA. This suggests that the enzymes bind to DNA along one face of the double helix making protein-DNA interaction in two successive major grooves with most of the non-specific spacer sequence in the intervening minor groove.  相似文献   

3.
Mammalian tissues contain protein carboxyl methyltransferases that catalyze the transfer of methyl groups from S-adenosylmethionine to the free carboxyl groups of D-aspartyl or L-isoaspartyl residues (EC 2.1.1.77). These enzymes have been postulated to play a role in the repair and/or degradation of spontaneously damaged proteins. We have now characterized a similar activity from Escherichia coli that recognizes L-isoaspartyl-containing peptides as well as protein substrates such as ovalbumin. The enzyme was purified by DEAE-cellulose, hydroxylapatite, Sephadex G-100, polyaspartate, and reversed-phase chromatography and was shown to consist of a single 24-kDa polypeptide chain. The sequence determined for the N-terminal 39 residues was used to design an oligonucleotide probe that allowed the precise localization of its structural gene (pcm) on the physical map of the E. coli chromosome at 59 min. Transformation of E. coli cells with a plasmid containing DNA from this region results in a 3-4-fold overproduction of enzyme activity. The nucleotide sequence determined for the pcm gene and its flanking regions was used to deduce a mature amino acid sequence of 207 residues with a calculated molecular weight of 23,128. This sequence shows 30.8% sequence identity with the human L-isoaspartyl/D-aspartyl methyltransferase and suggests that this enzyme catalyzes a fundamental reaction in both procaryotic and eucaryotic cells.  相似文献   

4.
5.
A model and appropriate equations were derived for the quantitative estimation of nucleotide sequence homology between two partially related viral genomes by measurement of the initial rate of reassociation of one labeled DNA in the presence of a second unlabeled DNA. The validity and usefulness of this procedure were demonstrated by the analysis of the reassociation kinetics of labeled adenovirus 7 DNA in the presence of unlabeled adenovirus 2 DNA. Based on DNA reassociation, the extent of homology between adenovirus 2 and 7 genomes was found to be 10 to 12%. The duplex formed between adenovirus 2 and 7 DNA had the appropriate thermal stability for a well-matched DNA-DNA hybrid.  相似文献   

6.
We have purified RsrI endonuclease (R.RsrI), an isoschizomer of EcoRI, from Rhodobacter sphaeroides strain 630. The enzyme is homogeneous as judged by polyacrylamide gel electrophoresis and size-exclusion high-performance liquid chromatography. RsrI endonuclease is a dimer over the concentration range of 0.05 to 1.4 mg/ml. The reduced and denatured molecular weight of the enzyme is 30,000 Da. R.RsrI, like R.EcoRI, catalyzes the cleavage of duplex DNA and oligodeoxyribonucleotides between the first two residues of the sequence GAATTC. R.RsrI exhibits a KM of 14 nM and a kcat of 6.5 min-1 when reacting with pBR322 DNA at 25 degrees C. R.RsrI differs from R.EcoRI in its N-terminal amino acid sequence, susceptibility to inhibition by antibodies, sensitivity to N-ethylmaleimide, isoelectric point, state of aggregation at high concentrations, temperature lability, and conditions for optimal reaction. R.RsrI displays a reduction of specificity ("star activity") under conditions that also relax the specificity of R.EcoRI.  相似文献   

7.
The gene coding for the GGTNACC specific Ecal DNA methyltransferase (M.Ecal) has been cloned in E. coli from Enterobacter cloacae and its nucleotide sequence has been determined. The ecalM gene codes for a protein of 452 amino acids (Mr: 51,111). It was determined that M.Ecal is an adenine methyltransferase. M.Ecal shows limited amino acid sequence similarity to other adenine methyltransferases. A clone that expresses Ecal methyltransferase at high level was constructed.  相似文献   

8.
Regulatory regions in DNA which have been sequenced have generally been found to contain one or more axes of two-fold rotational symmetry. If this symmetry is to be maintained in the helical sequence, the axis of rotation must be aligned with one of the two dyad axes of the helix. This is equivalent to saying that the rotational symmetry of the sequence can only be seen from certain viewing points in a circuit about the helix. More surprising is the fact that new symmetrical sequence arrangements can be seen at +/- 36 degrees, +/- 72 degrees, +/- 108 degrees, and +/- 144 degrees relative to the point at which the rotational symmetry is seen. This "amplification" of symmetry suggests a three-dimensional approach to sequence analysis. A specific reading frame, suggested by the geometry of the helix, is examined with regard to its elucidation of intra- and inter-sequence homologies. Two sequences are thus identified as being recurrent in a number of different regulatory sequences.  相似文献   

9.
A modified oligodeoxyribonucleotide duplex containing an unnatural internucleotide trisubstituted 3' to 5' pyrophosphate bond in one strand [5'(oligo1)3'-P(OCH3)P-5'(oligo2) 3'] reacts with nucleophiles in aqueous media by acting as a phosphorylating affinity reagent. When interacted with a protein, a portion of the oligonucleotide [--P-5'(oligo2)3'] becomes attached to an amino acid nucleophilic group through a phosphate of the O-methyl-modified pyrophosphate linkage. We demonstrate the affinity labeling of nucleophilic groups at the active sites of the EcoRI and RsrI restriction and modification enzymes with an oligodeoxyribonucleotide duplex containing a modified scissile bond in the EcoRI recognition site. With the EcoRI and RsrI endonucleases in molar excess approximately 1% of the oligonucleotide becomes attached to the protein, and with the companion methyltransferases the yield approaches 40% for the EcoRI enzyme and 30% for the RsrI methyltransferase. Crosslinking proceeds only upon formation of a sequence-specific enzyme-DNA complex, and generates a covalent bond between the 3'-phosphate of the modified pyrophosphate in the substrate and a nucleophilic group at the active site of the enzyme. The reaction results in the elimination of an oligodeoxyribonucleotide remnant that contains the 3'-O-methylphosphate [5'(oligo1)3'-P(OCH3)] derived from the modified phosphate of the pyrophosphate linkage. Hydrolysis properties of the covalent protein-DNA adducts indicate that phosphoamide (P-N) bonds are formed with the EcoRI endonuclease and methyltransferase.  相似文献   

10.
11.
12.
A Toxoplasma gondii genomic library was constructed in lambda EMBL3. Repeated fragments were detected by hybridization with radiolabeled total DNA from the parasite and one recombinant was chosen due to its strong hybridization signal. By using electrophoretic and hybridization analysis, four cross-hybridizating restriction fragments were selected and sequenced. The determined nucleotide sequence of these fragments (TGR1A, TGR1E, TGR2, and TGR4) has shown a complex system of conserved and degenerated repeats in which TGR1E corresponds to the most conserved element. This last sequence was used to investigate restriction fragment length polymorphisms among several T. gondii strains by Southern blotting.  相似文献   

13.
We have purified apolipoprotein C-II (apo C-II) from cynomolgus monkey plasma, prepared antibody against it and used the antibody to isolate a cDNA containing the complete coding sequence for cynomolgus monkey apo C-11. Sequence analysis indicated that the monkey apo C-11 cDNA was 200 by longer than the human and the difference in size was all in the 5° untranslated region of the mRNA. This was confirmed by Northern analysis of human and monkey RNA. There was an open reading frame in the monkey apo C-11 cDNA sequence encoding a preprotein of 101 amino acids — identical in size to the human protein. The carboxyl terminal 44 amino acids of the protein were 100% homologous to the human apo C-11 amino acid sequence indicating evolutionary conservation of both structure and function. However, the amino terminal 35 amino acids of the protein were only 75% homologous and the amino terminal 19 amino acids were only 58% homologous to the human sequence. The amino acid sequence derived from the nucleotide sequence predicts a more basic protein than the human apo C-11 and this is confirmed by isoelectric focusing and immunoblotting.  相似文献   

14.
1. The ferredoxin from bovine liver mitochondria, so-called hepatoredoxin, was purified and characterized as to its molecular weight, optical absorption spectrum and amino acid composition. 2. These properties were found to be very similar to those of adreno-ferredoxin. 3. To clarify the molecular basis of tissue specificity, the ferredoxin clones were obtained from a bovine liver library and the cDNA sequence of hepato-ferredoxin was determined. 4. The nucleotide sequence of hepato-ferredoxin clone was found to be identical to that of adreno-ferredoxin clone except for a single nucleotide in the 3' non-translated region. 5. Identical amino acid sequence of the two ferredoxins was confirmed by determining the partial amino acid sequence of the purified hepato-ferredoxin. 6. The results indicated that the organ specific activity of purified ferredoxin could not be explained by the different primary structure nor different RNA processing. 7. Other factors may be involved in the tissue specific properties of ferredoxins.  相似文献   

15.
The Bacillus subtilis FI DNA methyltransferase (M.BsuFI) modifies the outer cytosine of the DNA sequence CCGG, causing resistance against R.BsuFI and R.MspI restriction. The M.BsuFI gene was cloned and expressed in B.subtilis and Escherichia coli. As derived from the nucleotide sequence, the M.BsuFI protein has 409 amino acids, corresponding to a molecular mass of 46,918 daltons. Including these data we have compared the nucleotide and amino acid sequences of different CCGG recognizing enzymes. These analyses showed that M.BsuFI is highly related to two other CCGG specific methyltransferases, M.MspI and M.HpaII, which were isolated from Gram-negative bacteria. Between M.BsuFI and M.MspI the sequence similarity is particularly significant in a region, which has been postulated to contain the target recognition domains (TRDs) of cytosine-specific DNA methyltransferases. Apparently M.BsuFI and M.MspI, derived from phylogenetic distant organisms, use highly conserved structural elements for the recognition of the CCGG target sequence. In contrast the very same region of M.HpaII is quite different from those of M.BsuFI and M.MspI. We attribute this difference to the different targeting of methylation within the sequence CCGG, where M.HpaII methylates the inner, M.BsuFI/M.MspI the outer cytosine. Also the CCGG recognizing TRD of the multispecific B.subtilis phage SPR Mtase is distinct from that of the host enzyme, possibly indicating different requirements for TRDs operative in mono- and multispecific enzymes.  相似文献   

16.
17.
The dG residues within the EcoRI recognition sequence of ColE1 DNA have been selectively replaced with dI. Methylation of the altered sequence by the EcoRI modification enzyme is extremely slow as compared with methyl transfer to the natural recognition site. Since the affinity of the modification enzyme for the dI-containing sequence is considerably less than that for the natural sequence, we have concluded that the 2-amino group of dG has an important role in DNA site recognition by this enzyme. In contrast, the altered site is subject to cleavage by EcoRI endonuclease at rates essentially identical with those observed with the natural sequence. These results strongly suggest that the two enzymes utilize different contacts within the EcoRI site and are consisted with our conclusion (Rubin, R. A., and Modrich, P. (1977) J. Biol. Chem. 252, 7265-7272) that the two proteins interact with their common recognition sequence in different ways.  相似文献   

18.
Crystal structures of Type II restriction endonucleases demonstrate a conserved common core and active site residues but diverse structural elements involved in DNA sequence discrimination. Comparative structural analysis of restriction enzymes recognizing the same nucleotide sequence might therefore contribute to our understanding of the structural diversity of specificity determinants within restriction enzymes. We have solved the crystal structure of the Bacillus stearothermophilus restriction endonuclease Bse634I by the multiple isomorphous replacement technique to 2.17 Å resolution. Bse634I is an isoschisomer of the Cfr10I restriction enzyme whose crystal structure has been reported previously. Comparative structural analysis of the first pair of isoschisomeric enzymes revealed conserved structural determinants of sequence recognition and catalysis. However, conformations of the N-terminal subdomains differed between Bse634I/Cfr10I, suggesting a rigid body movement that might couple DNA recognition and catalysis. Structural similarities extend to the quaternary structure level: crystal contacts suggest that Bse634I similarly to Cfr10I is arranged as a tetramer. Kinetic analysis reveals that Bse634I is able to interact simultaneously with two recognition sites supporting the tetrameric architecture of the protein. Thus, restriction enzymes Bse634I, Cfr10I and NgoMIV, recognizing overlapping nucleotide sequences, exhibit a conserved tetrameric architecture that is of functional importance.  相似文献   

19.
The sequence of nucleotides comprising genes V, VII, and VIII of bacteriophage f1 was determined. The sequence was found to differ from that of the corresponding region of the related fd genome by eight base substitutions in gene V and one in gene VIII. The structure of gene VII was completely conserved between these two viruses and was identical to that of bacteriophage M13. Both transitions and transversions were found in cases where bases were substituted, but all substitutions were in the third codon position and had no effect on the structure of the corresponding protein product. The gene V protein product could thus be deduced to be identical to that of the corresponding proteins from bacteriophages fd and M13. A potential EcoRII cleavage site was formed by nucleotides 172 to 176 of gene V. Replicative form DNA form DNA from bacteriophage f1 is normally resistant to this enzyme, and evidence is presented to suggest that the sequence was modified through methylation of cytosine 173. The probable locations of other modified nucleotides in the sequence are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号