首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Recent studies of isolated human islets have shown that glucose induces hormone release with repetitive pulses of insulin and somatostatin in antisynchrony with those of glucagon. Since the mouse is the most important animal model we studied the temporal relation between hormones released from mouse islets. Batches of 5-10 islets were perifused and the hormones measured with radioimmunoassay in 30s fractions. At 3mM glucose, hormone secretion was stable with no detectable pulses of glucagon, insulin or somatostatin. Increase of glucose to 20mM resulted in an early secretory phase with a glucagon peak followed by peaks of insulin and somatostatin. Subsequent hormone secretion was pulsatile with a periodicity of 5min. Cross-correlation analyses showed that the glucagon pulses were antisynchronous to those of insulin and somatostatin. In contrast to the marked stimulation of insulin and somatostatin secretion, the pulsatility resulted in inhibition of overall glucagon release. The cytoarchitecture of mouse islets differs from that of human islets, which may affect the interactions between the hormone-producing cells. Although indicating that paracrine regulation is important for the characteristic patterns of pulsatile hormone secretion, the mouse data mimic those of human islets with more than 20-fold variations of the insulin/glucagon ratio. The data indicate that the mouse serves as an appropriate animal model for studying the temporal relation between the islet hormones controlling glucose production in the liver.  相似文献   

2.
3.
4.
Inhibition of pancreatic somatostatin release in response to glucose   总被引:2,自引:0,他引:2  
In 5 anaesthetized pigs blood was sampled both from the pancreatic venous effluent and from the peripheral venous circulation. Insulin and somatostatin were determined by radioimmunoassay. The somatostatin level in pancreatic venous blood was increased by a factor 2 as compared to the peripheral blood. Concomitant with the increase in insulin after intravenous glucose a significant decrease in somatostatin immunoreactivity was found, supporting the hypothesis that endogenous somatostatin participates in the local regulation of insulin release.  相似文献   

5.
Somatostatin is an inhibitor of hormone secretion through specific receptors (sst1-5). The aim of this study was to investigate the putative regulatory role of somatostatin analogues on the secretion of insulin and glucagon by rat pancreatic islets. After 48 h exposure only the non-selective agonists (somatostatin, octreotide and SOM-230) inhibited insulin accumulation. The inhibition of insulin secretion was accompanied by increased islet insulin contents. None of the analogues showed a consistent effect on the glucagon accumulation in the medium after 48 h. Since we observed a difference in the regulatory effect between the non-selective and selective analogues, combinations of selective analogues were studied. Combination of sst2+sst5 agonists inhibited the medium insulin accumulation, while combination of sst1+sst2 analogues caused a decrease in glucagon accumulation. After removal of somatostatin a rebound effect with increased insulin secretion were observed. This effect was reversed after 6 h. For SOM-230 insulin secretion continued to be suppressed even after the analogue was removed and returned to control values after 3 h. As for glucagon secretion there was an initial decline after culture with octreotide, while the other substances failed to induce any changes. In summary, non-selective somatostatin analogues or combinations of receptor selective analogues may cause inhibition of hormone secretion from rat pancreatic islets. For insulin and glucagon, combinations of sst2+sst5 and sst1+sst2, respectively may exert this effects. Thus, our data suggest that more than one sst must be involved to down-regulate islet glucagon and insulin secretion.  相似文献   

6.
7.
Metapyrone and eicosatetraynoic acid but not indomethacin are effective inhibitors of the secretory response of isolated rat pancreatic islets to arginine and glucose. Epoxyeicosatrienoic acids, products of the cytochrome P-450-NADPH dependent arachidonic acid epoxygenase activity, are potent and selective mediators for the in vitro release of either insulin or glucagon from preparations of isolated rat pancreatic islets.  相似文献   

8.
In order to understand the physiological role of endogenous insulin or glucagon in somatostatin release, isolated rat pancreatic islets were treated with antiinsulin or antiglucagon antiserum in the presence of physiological amounts of glucose. The release of somatostatin was unchanged by treatment with antiinsulin antiserum which neutralized insulin released by 3.3, 8.3 and 16.7 mM of glucose. However, somatostatin release after treatment with antiglucagon antiserum was much reduced at all concentrations of glucose when compared with the release from control serum. Exogenous rat insulin (0.11, 1.11 micrograms/ml) had no effect, but exogenous glucagon (1, 5 micrograms/ml) resulted in a significant increase. Somatostatin release was stimulated by glucose, but the effect was insignificant. These results clearly indicate the physiological role of endogenous glucagon in the modulation of somatostatin release from the islets of Langerhans. Furthermore, the physiological relationship between A, B and D cells may be mediated through the paracrine mechanism.  相似文献   

9.
10.
11.
12.
13.
The effect of synthetic somatostatin on insulin release was studied in vitro by using isolated islets of rats. Somatostatin, with concentrations from 10 ng/ml to 10μg/ml, inhibited insulin release induced by 16.7 mM glucose. Insulin release elicited by 10 μg/ml glucagon or 2 mM dibutyryl cyclic AMP was likewise inhibited by 100ng/ml somatostatin. By raising the calcium concentration of the incubation medium to 6 mM, glucose-induced insulin release was fully restored even in the presence of somatostatin.However, the same maneuver only partially counteracted the somatostatin inhibition of dibutyryl cyclic AMP-induced insulin release. These results suggest the involvement of calcium mobilization process in the inhibitory action of somatostatin.  相似文献   

14.
Alloxan is known as a selective B-cell cytotoxic substance, and there is so far little evidence for a direct toxic effect on the other islet cell types. To elucidate further whether such effects occur, the actions of alloxan on glucagon release and glucose oxidation were studied in isolated normal or A2-cell-rich pancreatic islets of the guinea pig. The A2-cell-rich islets were obtained from animals injected with streptozotocin 1–2 weeks before islet isolation. After exposure to alloxan (2 or 5mm) in vitro for 30min at 4°C, the islets were incubated in media containing either 1.7mm-glucose or 16.7mm-glucose plus 30m-i.u. of bovine insulin/ml. In both types of islet, alloxan abolished the ability of glucose and insulin both to decrease glucagon release and to increase the rate of glucose oxidation. A high concentration of glucose (28mm) during exposure to alloxan protected against these injurious effects. Tissue culture of alloxan-treated islets for 24h in 5.5mm-glucose restored neither the suppressive effect of glucose on glucagon release nor the inhibition of glucose oxidation of the A2-cells. However, culture for 1 week completely normalized both the glucagon-secretory response and glucose oxidation by both kinds of islets. It is therefore concluded that alloxan affects the secretory mechanism of not only the B-cell but also of the islet A2-cell, although this latter cell type is not primarily destroyed by the drug. The data furthermore support the concept of a relationship between glucose metabolism and the glucose-mediated glucagon release of the A2-cell.  相似文献   

15.
When the technique of immunofluorescence is applied to rat pancreas to detect insulin, glucagon, somatostatin and pancreatic polypeptide (PP), two populations of islets having distinct cellular content and topographical distribution can be recognized. Islets from the lower part of the head show a well-defined rim of PP-containing cells, but very few or no glucagon-containing cells. Islets from the body and tail display the familiar rim of glucagon-containing cells and possess very few or no PP-containing cells. This inverse relationship between glucagon and PP-cells in different parts of the pancreas means that caution must be exercised when interpreting functional or morphological observations using different pancreatic fractions.  相似文献   

16.
Rates of glucose oxidation and insulin release in response to a wide range of glucose concentrations were studied in short-term experiments in isolated mouse pancreatic islets maintained in tissue culture for 6 days at either a physiological glucose concentration (6.7mm) or at a high glucose concentration (28mm). The curves relating glucose oxidation or insulin release to the extracellular glucose concentration obtained with islets cultured in 6.7mm-glucose displayed a sigmoid shape similar to that observed for freshly isolated non-cultured islets. By contrast islets that had been cultured in 28mm-glucose showed a linear relationship between the rate of glucose oxidation and the extracellular glucose concentration up to about 8mm-glucose. The maximal oxidative rate was twice that of the non-cultured islets and the glucose concentration associated with the half-maximal rate considerably decreased. In islets cultured at 28mm-glucose there was only a small increase in the insulin release in response to glucose, probably due to a depletion of stored insulin in those B cells that had been cultured in a high-glucose medium. It is concluded that exposure of B cells for 6 days to a glucose concentration comparable with that found in diabetic individuals causes adaptive metabolic alterations rather than degeneration of these cells.  相似文献   

17.
18.
1. The biosynthesis of glucagon in guinea-pig A(2) cells was investigated by incubation of isolated islets of Langerhans in the presence of [(3)H]tryptophan for periods of up to 14 days. Proteins were extracted from islets and incubation media and analysed by gel filtration. 2. In addition to very-high-molecular-weight (100000) proteins, the principal tryptophan-containing biosynthetic product after incubation for up to 17h was a protein of minimum mol.wt. 9000, which co-eluted on gel filtration with a peak of glucagon-like immunoreactivity, but was apparently devoid of biological activity in a fat-cell assay. A discrete peak of labelled glucagon was only recovered after incubation for at least 6 days. Losses of glucagon during the extraction and rapid secretion of newly synthesized glucagon into incubation media were excluded as reasons for the lack of recovery of labelled hormone from islets after shorter incubations. 3. The 9000-mol.wt. protein was localized to A(2) cells in experiments using B-cell-depleted islets, and to A(2)-cell granules by subcellular fractionation and electron-microscopic radioautography. Only glucagon was secreted into the incubation medium. 4. Possible relationships between the 9000-mol.wt. protein and glucagon are discussed in the light of postulated mechanisms of glucagon biosynthesis.  相似文献   

19.
Pancreatic islets of Wistar rats were isolated by collagenase digestion and incubated with [3H]-L-phenylalanine. Using a specific somatostatin antiserum radioactivity was found in the antibody-antigen-complex. The radioactivity was displaced by unlabelled somatostatin. These findings give the first evidence for the biosynthesis of somatostatin or somatostatin-like peptides in mammalian pancreatic islets.  相似文献   

20.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号